Möbius Transformations For Global Intrinsic Symmetry Analysis

Vladimir G. Kim
Yaron Lipman
Xiaobai Chen
Thomas Funkhouser

Princeton University
Goal

- Find a map f from surface onto itself that preserves geodesic distances

\[f : \mathcal{M} \to \mathcal{M} \quad \text{s.t.} \quad d_g(p, q) = d_g(f(p), f(q)) \]
Previous Work

- Extrinsic Symmetry
- Intrinsic Symmetry
 - Symmetry Axis
 - Laplace-Beltrami Operator
 - Gromov-Hausdorff Distance
- Inter-Surface Correspondence
 - Möbius Voting

Podolak et al., 2006
Mitra et al., 2006
Previous Work

- Extrinsic Symmetry
- Intrinsic Symmetry
 - Symmetry Axis
 - Laplace-Beltrami Operator
 - Gromov-Hausdorff Distance
- Inter-Surface Correspondence
 - Möbius Voting

Xu et al., 2009
Previous Work

- Extrinsic Symmetry
- Intrinsic Symmetry
 - Symmetry Axis
 - Laplace-Beltrami Operator
 - Gromov-Hausdorff Distance
- Inter-Surface Correspondence
 - Möbius Voting

Ovsjanikov et al. '08
Previous Work

- Gromov-Hausdorff Distance
- Inter-Surface Correspondence
 - Möbius Voting

Raviv et al. '10
Previous Work

- Extrinsic Symmetry
- Intrinsic Symmetry
 - Symmetry Axis
 - Laplace-Beltrami Operator
 - Gromov-Hausdorff Distance

- Inter-Surface Correspondence
 - Möbius Voting
Previous Work
Möbius Voting

- Look for an isometry
 - Conformal
 - Area-preserving

- Conformal Maps
 - Mid-edge flattening
 - Möbius Transformation
 - Defined by 3 correspondences
Previous Work
Möbius Voting

- Look for an isometry
 - Conformal
 - Area-preserving

- Conformal Maps
 - Mid-edge flattening
 - Möbius Transformation
 - Defined by 3 correspondences
Previous Work
Möbius Voting

- Look for an isometry
 - Conformal
 - Area-preserving

- Conformal Maps
 - Mid-edge flattening
 - Möbius Transformation
 - Defined by 3 correspondences

\[m(z) = \frac{az + b}{cz + d} \]
Look for an isometry
- Conformal
- Area-preserving

Conformal Maps
- Mid-edge flattening
- Möbius Transformation
- Defined by 3 correspondences
Our Approach

- Look for an Anti-Möbius Transformation that makes intrinsic symmetry extrinsic on complex plane
Pipeline

Generating Set S_1

Complex Plane

Best Anti-Möbius Transformation

Final Correspondences

Correspondence Set S_2
Pipeline

Generating Set S_1

Complex Plane

Best Anti-Möbius Transformation

Correspondence Set S_2

Final Correspondences
Finding a Symmetric Point Set

Generating Set S_1

Correspondence Set S_2

Complex Plane

Best Anti-Möbius Transformation

Final Correspondences
Finding a Symmetric Point Set

- Goal: need a set containing potential correspondences and stationary points

 e.g. Find a set $S \subset \mathcal{M}$ invariant under $f : f(S) = S$

- Approach: use critical points of symmetry invariant function Φ
Finding a Symmetric Point Set

Example Symmetry Invariant Function

- Average Geodesic Distance
 \[\Phi_{\text{agd}}(p) = \int_{d_g(p,q)} d_g(p,q) dq \]
Finding a Symmetric Point Set
Example Symmetry Invariant Function

- Average Geodesic Distance \(\Phi_{\text{agd}}(p) = \int_{d_g(p,q)} d_g(p, q) dq \)

- Robust to noise and outliers
- Only few extrema
- Generating Set for Anti-Möbius Transformations
Finding a Symmetric Point Set Theory

- Symmetry: $f : \mathcal{M} \rightarrow \mathcal{M}$ s.t. $d_g(p, q) = d_g(f(p), f(q))$
Finding a Symmetric Point Set

Theory

- **Symmetry:** $f : \mathcal{M} \to \mathcal{M}$ s.t. $d_g(p, q) = d_g(f(p), f(q))$
- **Symmetry Invariant Function:** $\Phi(p) = \Phi(f(p))$
Finding a Symmetric Point Set Theory

- Symmetry: \(f : \mathcal{M} \rightarrow \mathcal{M} \) s.t. \(d_g(p, q) = d_g(f(p), f(q)) \)
- Symmetry Invariant Function: \(\Phi(p) = \Phi(f(p)) \)
- Prop. 7.1: \(\nabla|_p \Phi = 0 \iff \nabla|_{f(p)} \Phi = 0 \)
Finding a Symmetric Point Set Theory

- **Symmetry**: \(f : \mathcal{M} \rightarrow \mathcal{M} \) s.t. \(d_g(p, q) = d_g(f(p), f(q)) \)
- **Symmetry Invariant Function**: \(\Phi(p) = \Phi(f(p)) \)
- **Prop. 7.1**: \(\nabla|_p \Phi = 0 \iff \nabla|_{f(p)} \Phi = 0 \)

Look for critical points
Finding a Symmetric Point Set
Theory

- **Symmetry**: \(f : \mathcal{M} \rightarrow \mathcal{M} \) s.t. \(d_g(p, q) = d_g(f(p), f(q)) \)
- **Symmetry Invariant Function**: \(\Phi(p) = \Phi(f(p)) \)
- **Prop. 7.1**: \(\nabla |_p \Phi = 0 \iff \nabla |_{f(p)} \Phi = 0 \)
 Look for critical points
- **Theorem 7.6**:
 - If \(f \) is bilateral reflective, the gradient of \(\Phi \) is parallel to the curve of stationary points of \(f \)
Finding a Symmetric Point Set
Theory

- **Symmetry:** \(f : \mathcal{M} \rightarrow \mathcal{M} \) \(\text{s.t.} \ d_g(p, q) = d_g(f(p), f(q)) \)

- **Symmetry Invariant Function:** \(\Phi(p) = \Phi(f(p)) \)

- **Prop. 7.1:** \(\nabla |_p \Phi = 0 \iff \nabla |_{f(p)} \Phi = 0 \)

 Look for critical points

- **Theorem 7.6:**
 - If \(f \) is bilateral reflective, the gradient of \(\Phi \) is parallel to the curve of stationary points of \(f \).

 At least 2 stationary points will have \(\nabla |_p \Phi = 0 \)
Finding a Symmetric Point Set

Theory

- **Symmetry:** $f : \mathcal{M} \rightarrow \mathcal{M}$ s.t. $d_g(p, q) = d_g(f(p), f(q))$
- **Symmetry Invariant Function:** $\Phi(p) = \Phi(f(p))$
- **Prop. 7.1:** $\nabla|_p \Phi = 0 \iff \nabla|_{f(p)} \Phi = 0$

 Look for critical points

- **Theorem 7.6:**
 - If f is bilateral reflective, the gradient of Φ is parallel to the curve of stationary points of f
 At least 2 stationary points will have $\nabla|_p \Phi = 0$
 - For any other symmetry if there is a stationary point it would be a critical point of Φ
Pipeline

Generating Set S_1

Complex Plane

Best Anti-Möbius Transformation

Final Correspondences

Correspondence Set S_2
Pipeline

Complex Plane

Best Anti-Möbius Transformation

Generating Set S_1

Correspondence Set S_2

Final Correspondences
Searching for the Best Anti-Möbius Transformation

- **Goal:** find a conformal map that is as isometric as possible
- **Approach:** use small symmetry invariant set to explore conformal mappings
Searching for the Best Anti-Möbius Transformation

- Explore all 3-plets:
 - \(z_1 \rightarrow z_1 \)
 - \(z_2 \rightarrow z_3 \)
 - \(z_3 \rightarrow z_2 \)

- Explore all 4-plets:
 - \(z_1 \rightarrow z_2 \)
 - \(z_2 \rightarrow z_1 \)
 - \(z_3 \rightarrow z_4 \)
 - \(z_4 \rightarrow z_3 \)

Symmetry Invariant Point Set from AGD (21 points)
Searching for the Best Anti-Möbius Transformation

- Explore all 3-plets:
 - $z_1 \rightarrow z_1$
 - $z_2 \rightarrow z_3$
 - $z_3 \rightarrow z_2$

- Explore all 4-plets:
 - $z_1 \rightarrow z_2$
 - $z_2 \rightarrow z_1$
 - $z_3 \rightarrow z_4$
 - $z_4 \rightarrow z_3$

Symmetry Invariant Point Set from AGD (21 points)
Best Anti-Mobius Transformation

Green Edges: Mutually Closest Neighbors under a conformal map defined by m
Best Anti-Mobius Transformation

Alignment Score: How well does the map preserve area?

Good m
- 60% mutually closest

Bad m
- 17% mutually closest
Pruning

- Ignore a-priory bad mappings
 - Different AGD values
 - Too close correspondences
 - Different geodesic distances

Bad correspondence
Pruning

- Ignore a-priory bad mappings
 - Different AGD values
 - Too close correspondences
 - Different geodesic distances

Bad correspondence
Pruning

- Ignore a-priory bad mappings
 - Different AGD values
 - Too close correspondences
 - Different geodesic distances
Final Correspondences

- **Goal:** Given sparse correspondences: \((p_i, m(p_i) = q_i)\), find a correspondence \(q\) for every \(p\)
- **Approach:** For any \(p\), find \(q\) so that their geodesic distances to sparse set are same

Similar to: “Efficient computation of isometry-invariant distances between surfaces”. Bronstein et al. 2006
Pipeline

Generating Set S_1

Conformal Space

Best Anti-Möbius Transformation

Final Correspondences

Correspondence Set S_2
Results

Benchmark

- Goal: quantitatively evaluate performance of our method on 366 models

Scape: 71 Models

Non-Rigid World: 75 Models

SHREC, Watertight’07: 220 models
Results

Benchmark

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

\[f_{\text{true}} : S_{\text{true}} \rightarrow S_{\text{true}} \]
Results

Benchmark

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

\[f_{\text{true}} : S_{\text{true}} \rightarrow S_{\text{true}} \]
Results
Benchmark

- Ground Truth
- **Geodesic Error**
- Correspondence Rate
- Mesh Rate
- Results

\[\sum_{s_{true} \in S_{true}} d_g(f(s_{true}), f_{true}(s_{true})) \]
Results

Benchmark

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

\[d_g(f(s_{true}), f_{true}(s_{true})) < \tau \]
Results Benchmark

- Ground Truth
- Geodesic Error
- Correspondence Rate
- Mesh Rate
- Results

Correspondence Rate > 75%
Results
Benchmark

<table>
<thead>
<tr>
<th></th>
<th>Non-Rigid World</th>
<th>SCAPE Human</th>
<th>SHREC Watertight</th>
<th>All Data Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geodesic</td>
<td>3.3</td>
<td>4.2</td>
<td>1.93</td>
<td>2.65</td>
</tr>
<tr>
<td>Corr rate</td>
<td>85%</td>
<td>82%</td>
<td>83%</td>
<td>83%</td>
</tr>
<tr>
<td>Mesh rate</td>
<td>76%</td>
<td>72%</td>
<td>75%</td>
<td>75%</td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Our Proposed Method</th>
<th>Mobius Voting (Lipman ‘09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geodesic Corr rate (%)</td>
<td>3.49</td>
<td>6.78</td>
</tr>
<tr>
<td>Mesh rate (%)</td>
<td>86%</td>
<td>70%</td>
</tr>
<tr>
<td>Time (s)</td>
<td>25s</td>
<td>310s</td>
</tr>
</tbody>
</table>
Rotational Symmetry
Large-scale outliers

Best Mobius

Second Best Mobius
Conclusion

- Anti-Mobius Transformations can be used for analysis of intrinsic symmetries
- Method succeeded on 75% of 366 meshes
- Our method improves speed and performance significantly over Möbius Voting
Limitations

- General partial intrinsic symmetries
 - Alignment error for a conformal map is global

- Symmetry-invariant sets
 - Robustness to noise
 - Various functions (other than AGD)
Acknowledgements

- **Funding**
 - NSF (IIS-0612231, CNS-0831374, CCF-0702672, and CCF-0937139)
 - NSERC Graduate Scholarship (PGS-M, PGS-D)
 - Google
 - Rothschild Foundation

- **Data**
 - Daniela Giorgi and AIM@SHAPE (Watertight’07)
 - Drago Arguelov and Stanford University (SCAPE)
 - Project TOSCA (Non-Rigid World)
Online

• More data and results:

http://www.cs.princeton.edu/~vk/IntrinsicSymmetry/
Finding a Symmetric Point Set

- **Minimal Geodesic Distance**
 \[\Phi_{\text{mgd}}(p; S_1) = \min_{q \in S_1} d_g(p, q) \]
Finding a Symmetric Point Set

- Minimal Geodesic Distance
 \[\Phi_{mgd}(p; S_1) = \min_{q \in S_1} d_g(p, q) \]

- Can apply iteratively to construct set of arbitrary size
- Less robust
- Correspondence Set