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Symmetry-Guided Texture Synthesis and Manipulation
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This article presents a framework for symmetry-guided texture synthesis
and processing. It is motivated by the long-standing problem of how to
optimize, transfer, and control the spatial patterns in textures. The key idea
is that symmetry representations that measure autocorrelations with respect
to all transformations of a group are a natural way to describe spatial patterns
in many real-world textures. To leverage this idea, we provide methods to
transfer symmetry representations from one texture to another, process the
symmetries of a texture, and optimize textures with respect to properties of
their symmetry representations. These methods are automatic and robust,
as they don’t require explicit detection of discrete symmetries. Applications
are investigated for optimizing, processing, and transferring symmetries and
textures.
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1. INTRODUCTION

Many materials have textures (fine-scale, high-frequency variations)
organized in distinctly recognizable spatial patterns (large-scale,
low-frequency variations). For example, tiger pelts have fine-scale
fur textures organized in large-scale striped patterns; floor carpets
have fine-scale weave textures organized in large-scale ornamental
patterns; and, brick walls have fine-scale mud textures organized in
a large-scale block patterns.
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In an attempt to model these textured patterns algorithmically,
there has been a significant amount of research on example-based
texture synthesis in computer graphics over the last decade [Efros
and Leung 1999; Wei and Levoy 2000; Efros and Freeman 2001].
The key challenge in these methods is to provide a way for the user
to guide the synthesis process, that is, specify what spatial patterns
should appear in the output image. Previous methods have con-
sidered texture transfer [Efros and Freeman 2001], texture mixing
[Heeger and Bergen 1995], texture-by-numbers [Hertzmann et al.
2001], and so on. In particular, Liu et al. [2004] suggested a tool
for manipulating Near-Regular Textures (NRTs), providing meth-
ods for controlling geometric and color regularity and transfering
deformations and lighting between NRTs. Their method provides
excellent results when a deformation field induced from a deformed
2D lattice can be detected in the input image(s), but does not provide
a solution for images with other types of patterns.

Concurrently, there has been a large amount of recent work in
computer vision and graphics on analyzing and representing sym-
metries in objects. Methods have been proposed for measuring ap-
proximate symmetries [Zabrodsky et al. 1995; Kazhdan et al. 2004],
for detecting partial symmetries [Mitra et al. 2006], for extracting
repeating patterns [Park et al. 2009; Pauly et al. 2008], and for rep-
resenting shapes in a symmetry space [Reisfeld et al. 1995; Podolak
et al. 2006]. These representations encode not only perfect discrete
symmetries, but also a continuous measure of how symmetric a
pattern is with respect to every transformation within a group (e.g.,
translations by all vectors, reflections across all planes, etc.). As
such, we conjecture that they are well-suited for characterizing the
defining spatial patterns of most real-life textures.

Our goal is to utilize these automatically computed representa-
tions of partial and approximate symmetries to guide texture synthe-
sis and manipulation. The key idea is to represent spatial patterns in
a symmetry space that explicitly encodes how symmetric a pattern
is with respect to a group of transformations and to use an objective
function defined in that symmetry space to guide texture process-
ing. For example, consider the symmetry transfer examples shown
in Figure 1. In this case, the user wishes to create an image with the
high-frequency characteristics of a “source texture” (shown in the
top row) and with the low-frequency spatial pattern of the “target
pattern” (left column), that is, transfer the spatial pattern of the tar-
get onto the source. Our approach is to represent the target pattern
in a symmetry space (shown to the right of the target pattern) and
to guide a texture synthesis process that copies patches of texture
from the source to produce a result with a matching symmetry rep-
resentation. This approach takes advantage of the fact that the target
pattern is more prominent in the symmetry space than the original
space, and therefore is better transferred in that domain.

The advantages of this approach are fourfold. First, it leverages
the idea that symmetry representations are natural for characteriz-
ing spatial patterns in many images. Second, it does not require
explicit detection of symmetries (e.g., extraction of a lattice), but
only measurement of approximate symmetries, which is both robust
and fully automatic. Third, it allows direct control over the sym-
metry properties of an image, for example, making an image more
symmetric or asymmetric. Finally, it is general: It works with a
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Fig. 1. Texture synthesis with symmetry transfer. Translational symmetries of targets (left column) are transfered to source textures (top row). Note how
synthesized images have fine-scale details of sources and coarse-scale patterns of targets (symmetry representations are inset).

variety of input data types, texture synthesis methods, and symme-
try representations, each of which can capture qualitatively different
types of patterns.

The main contribution of our article is the idea that representa-
tions in symmetry space are a natural way to describe spatial pat-
terns in many real-world textures. We also provide a framework to
investigate this idea which includes a variety of methods for symme-
try representation, objective function specification, and image opti-
mization. Different combinations of the methods are shown useful
for symmetry transfer (Section 4), symmetry processing (Section 5),
and symmetry optimization (Section 6).

2. PREVIOUS WORK

Texture synthesis and symmetry analysis have both received a lot
of attention recently in computer vision and computer graphics.

Texture synthesis. Algorithmic generation of textures dates back
several decades [Ebert et al. 2002]. Most recent work has focused on
texture synthesis by example, in which an input texture image drawn

by an artist or captured in a photograph is resampled to produce a
new texture image with similar local appearance and arbitrary size
[Wei et al. 2009]. For example, Heeger and Bergen [1995] and
Portilla and Simoncelli [2000] proposed parametric models that
represent the pattern of an example texture with color histograms
and multiscale-oriented filter responses and then synthesize new
textures with matching statistics. This approach allows mixing of
textures (taking pattern and color from two different sources) and
interpolation of textures [Bar-Joseph et al. 2001; Matusik et al.
2005].However, there is still limited control over the result. Our
method is synergistic with this approach: It provides a new way
to guide texture synthesis toward a target by matching statistical
representations of its symmetries.

The most common approach to texture synthesis is based on
Markov Random Fields (MRF). This method models a texture as
the realization of a local and stationary random process based on the
assumption that pixels with similar neighborhoods should have sim-
ilar colors. Efros and Leung [1999] provided an early MRF method
that synthesizes textures one pixel at a time to produce pixel neigh-
borhoods consistent with an example. Several approaches have been
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proposed to improve the speed and quality of their method, including
Wei and Levoy [2000], who used tree-structured vector quantization
to speed up the neighborhood search, and Efros and Freeman [2001],
who suggested copying bigger patches, introducing a way to blend
them seamlessly. The patch-based approach can also provide more
control over the texture synthesis process. For example, by selecting
patches or pixels of certain intensity one can do texture transfer as
in Efros and Freeman [2001]. A texture by number application pro-
posed within image analogies framework [Hertzmann et al. 2001]
allows synthesizing scenes guided by user’s sketch. Better synthesis
models use graph cuts [Kwatra et al. 2003] and/or global optimiza-
tion [Kwatra et al. 2005] to synthesize textures from multiple irreg-
ularly sized patches. These methods also have enough flexibility to
incorporate user control, for example Xu et al. [2009] suggested
aligning texture features along shape feature lines, highlighting un-
derlying shape. Our work extends these methods to include control
over symmetries.

Symmetry analysis. Characterizing symmetries in an image is
a long-standing problem in computer vision. Over the last two
decades, several methods have been proposed for detecting, rep-
resenting, and manipulating approximate and partial symmetries
in shapes. For example, Zabrodsky et al. [1995] proposed an early
method for measuring the symmetry distance of a 2D boundary with
respect to a given transformation based on the amount of work it
would require to make the boundary symmetric with respect to that
transformation. Kazhdan et al. [2003] extended this definition to the
domain of spherical grids and provided a Fourier space algorithm
for efficient computation of symmetry distance for all plane reflec-
tions and rotations about a center point [Kazhdan et al. 2004]. Mitra
et al. and others have proposed voting and clustering algorithms to
identify approximate and partial symmetries robustly [Mitra et al.
2006, 2007; Podolak et al. 2006]. These methods have mainly been
used for detecting a small, discrete set of symmetries, which later
are used to guide shape processing applications [Golovinskiy et al.
2009].

Our approach is based on prior work that represents a shape
in a symmetry space, a space parameterized by a group of trans-
formations storing measurements of the symmetry distance of a
image/shape with respect to every transformation in the group.
For example, Reisfeld et al. [1995] defined a generalized symme-
try transform, which measures the symmetry distance of an image
with respect to point reflections across every position in an image.
Podolak et al. [2006] considered a similar approach to define the
planar reflective symmetry transform, which provides a measure of
symmetry distance with respect to every plane (line in 2D) through
the space of an object. Kazhdan et al. [2004] defined reflectional
and rotational symmetry descriptors that measure correlations of an
image with respect to transformations that fix the center of mass.
These methods have been used for a variety of applications, includ-
ing finding features in noisy images (e.g., eyes on a face [Reisfeld
and Yeshurun 1992]), discriminating textures [Bonneh et al. 1994;
Chetverikov 1995], and segmenting images based upon local sym-
metries [Kelly and Levine 1995]. However, they have not been used
for texture synthesis.

Symmetry-aware texture processing. Symmetry detection has also
been used in the analysis and recognition of textures. For example,
Leung and Malik [1996] used a greedy optimization technique to
group repeating texels detected in salient image regions. This tech-
nique only found correspondences and transformations for local
patches, but did not consider global symmetries. Turina et al. [2001]
improved the grouping by using a strong geometric regularity as-
sumption.

Fig. 2. Symmetry-guided texture processing framework.

Recently Park et al. [2009], Hays et al. [2006], and others have
proposed algorithms for detecting a deformed lattice corresponding
to regular elements in images, which can be used to guide tex-
ture processing. In the work most closely related to ours, Liu et al.
[2004] explicitly model a near-regular texture as a warped lattice
of repeating texels. They achieve irregularity that is common for
real-life textures by storing color and geometry variance as off-
sets from otherwise perfectly symmetric structure. This generative
model provides control over regularity of a texture and allows trans-
ferring large-scale properties like deformation or lighting between
textures. However, it depends on a deformation model based on an
underlying 2D lattice, and thus it can only be used when such a
lattice can be detected automatically or when the underying lattice
is specified with user input.

3. OVERVIEW

In this article, we investigate symmetry-guided texture synthesis and
manipulation. The main idea is to specify the core spatial patterns
of an image in a symmetry representation and to use an objective
function defined on that symmetry representation to guide texture
synthesis and manipulation.

This idea is very general, and it suggests a multitude of possi-
ble implementations for different applications. For example, one
application might optimize an input image until it has a symmetry
representation matching that of an example target image (sym-
metry transfer), while another application might deform an input
image until the magnitude of its symmetry representation is max-
imal (symmetrization). These applications have many similarities,
but the implementation details may be very different. So, for our
investigation, we decompose the space of possible approaches into
a generic set of computational steps, provide different implemen-
tations for each one, and investigate how they can be integrated to
support different applications.

Figure 2 provides an overview of the framework. First, we select a
texture perturbation model, θ , which transforms an input image, f ,
into an output image, f ′, while maintaining the high-frequency tex-
ture characteristics of f (examples include example-based texture
synthesis, as-rigid-as-possible deformation, etc.). Next, we intro-
duce a symmetry transform, S, which computes a symmetry repre-
sentation, S(f ), of any image f representing its low-frequency pat-
tern characteristics (examples include the reflective symmetry trans-
form, rotational symmetry descriptor, etc.). Then, we introduce a
target symmetry representation Starget that describes the large-scale
pattern desired in the output image (examples ways of specifying
Starget include filtering S(f ) or computing S(g) for another input
image g). Then, we define an objective function, E(S(f ′)), which
measures how well the symmetry representation of f ′ matches a de-
sired target symmetry representation Starget (examples include the
L2 difference between S(f′) and Starget , the variance of S(f ′), etc.).
Finally, we perform an optimization to search for the output image
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Fig. 3. Texture synthesis with symmetry transfer from sketches. New images are synthesized with local details of source texture images (top row) and global
patterns of sketched target images (left column). For each synthesized image, the larger left image shows the result, while the smaller images to its right show
a zoomed view (top) and symmetry representation (bottom).

f ′ whose symmetry representation S(f ′) minimizes the objective
function E(S(f ′)) among all possible images in the output space of
θ (f ).

Given this framework, we are able to consider a wide variety of
symmetry-guided texture synthesis and manipulation applications.
The following three sections provide example applications, grouped
by how the target symmetry representation is specified.

—Symmetry transfer: the target is provided by the symmetry rep-
resentation of a different image g.

—Symmetry filtering: the target is generated by filtering the sym-
metry representation of the input image f .

—Symmetry optimization: the target is defined by the optimum
of an objective function computed directly from the symmetry
representation.

For each application, we discuss possible design trade-offs in the
choice of input image, symmetry representation, objective function,
and texture perturbation model, and we provide possible implemen-
tations and present representative results.

Fig. 4. Symmetry transfer by as-rigid-as-possible deformation. The input
image of a star fish on the left is deformed to minimize the difference of
its rotational symmetry descriptor with that of images with perfect five-fold
rotational symmetry (middle) and perfect four-fold rotational symmetry
(right). Note that the symmetries of the target are transferred to the input in
both cases (four of the legs form approximate right angles in the rightmost
image).

ACM Transactions on Graphics, Vol. 31, No. 3, Article 22, Publication date: May 2012.



Symmetry-Guided Texture Synthesis and Manipulation • 22:5

Fig. 5. Symmetry filtering by as-rigid-as-possible deformation. Starting from the input image shown in (b), its symmetry representation (inset below and right)
is filtered to produce new targets. (a) shows a sharpened symmetry representation, while (c) and (d) are blurred with smaller and larger sigma, respectively.
Warping the original image with as-rigid-as-possible deformation to minimize differences to the targets produces the images shown in (a,c,d). Note that this
process is able to control the symmetry of the image with simple image processing filters.

4. SYMMETRY TRANSFER

There are many scenarios in which a user might want to create an
image with the fine-scale textures of a source image, f , but the
large-scale patterns of a target image, g (e.g., as in Figure 1).

Our framework addresses this problem by capturing the large-
scale patterns of g in a symmetry representation, S(g), and then
perturbing the source image f to find the new image f ′ ∈ θ (f )
that minimizes the difference of its symmetry representation, S(f ′),
from the target’s, S(g). We have investigated several applications of
this type, using the L2 distance between symmetry representations
as the objective function to minimize, for example,

arg min
θ

EL2 (S(θ (f ))) =
∫

‖S(θ (f )) − S(g)‖2. (1)

The following provides two examples based on different texture
perturbation models: texture synthesis and as-rigid-as-possible de-
formation.

Example 1: Texture Synthesis. In our first example, we investigate
how symmetry transfer can be utilized to guide a patch-based tex-
ture synthesis algorithm. In this case, a new image f ′ of arbitrary
dimensions is created by composing patches of pixels extracted
from a source image f in order to minimize the L2 difference be-
tween the symmetry representation of f ′ to that of a target image
g.

For this example (and several others that follow), our symme-
try representation is the translational symmetry transform, ST (f ),
which measures the correlation between a toroidal function f and
itself at every possible translation.

ST (f )[τx, τy] =
∫ ∫

f (x, y)f (x + τx, y + τy)dxdy

||f ||2 (2)

This function is efficient to compute in the frequency domain, it
is not bijective, and it has high values only for translation vectors
that align repeating image elements, and thus it provides a good
representation for translational structure within our framework. To

compute ST (f ) for an image f , we calculate the discrete autocor-
relation function for f , normalize it to mean μ(ST (f )) = 0 and
variance σ 2(ST (f )) = 1, and then (optionally) limit its domain to a
fraction of the input image size (to capture smaller patterns). Exam-
ples of ST (f ) are shown as insets for their corresponding images f
in Figures 1 and 3, note how repeated patterns are clearly evident.

With this symmetry representation extracted from a target im-
age as a guide, we synthesize new images using a variation of the
quilting technique described in [Efros and Freeman 2001] as our
perturbation model θsynth. Our perturbation model f ′ ∈ θsynth(f )
allows exploring a space of plausible images by specifying a list
of patches in the source texture f , such that neighboring patches
in the resulting image f ′ can be stitched seamlessly. We find a lo-
cally optimal solution in that space by a random walk procedure.
In particular, we first initialize a tiled image of a desired size using
random patches extracted from the source texture. Then, we iter-
atively change the patch in every tile, one-by-one picking a new
patch consistent with its neighbors using the methods described in
the original paper. However, rather than picking a patch randomly
from the ones that have small differences in overlaps with their
neighbors, as is done in the original work, we choose the patch that
causes the symmetry representation of the resulting image to move
closest to the symmetry representation of the target. As such, we
end up with an image composed of small-scale elements from the
source texture, but the symmetry representation of the target pattern.

Example images synthesized with this method are presented in
Figures 1 and 3. For each example, the top row shows the source
texture, and the left column shows the target. Note how synthe-
sized image shave the coarse-scale repeated patterns modeled after
the targets (i.e., their translational symmetry representations match
the targets’) but the fine-scale texture of the source (e.g., images
shown at zoom x3 are similar). Our method works equally well
for transferring patterns from texture images (Figure 1) and from
rough hand-drawn sketches (Figure 3). We find the latter case par-
ticularly interesting because it provides the opportunity for an in-
teractive program to modify the translational structure of a texture
with a simple sketching interface (e.g., by drawing an “X” to create
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cross-hatches, as in the first row of Figure 3). Note that even a very
small sketch is sufficient to define target symmetry.

Example 2: Image Deformation. Another potential application of
symmetry transfer is to deform an image to conform to the symmetry
representation of a target.

To investigate this case, we implemented an as-rigid-as-possible
deformation [Igarashi et al. 2005] as texture perturbation model
θdef orm and applied it within an iterative optimization algorithm
whose objective function measures the L2 difference between the
symmetry representation of the image and that of a target. Thus,
an image produced by this perturbation model f ′ ∈ θdef orm(f ) is
a warped version of the input image f and is defined by a dis-
placement of control points. It is optimized with a gradient descent
algorithm. Specifically, given an image, N = 256 feature points
are extracted automatically by a Haar corner detector (if less than
N points are extracted, additional points are distributed via dart
throwing). Points are then meshed via a Delauney triangulation,
and assembled into a multiscale hierarchy for coarse-to-fine warp-
ing. Starting at the coarsest level for each control point we estimate
a gradient with respect to energy function E(S(θ (f ))), using a pre-
scribed initial step (e.g., 5 pixels are used in our examples). We
iteratively go over all control points at the current level and move
them in the direction of a gradient, until we reach local minima
or maxima. Then the step is halved and cycles repeat until step is
below 1 pixel. Then our optimizer goes to a finer level with halved
initial step.

Figure 4 shows an example result of this process. In this case, we
experimented with a symmetry representation based on the rota-
tional symmetry descriptor, SR(f ), which measures the correlation
between a function f and itself at every rotation around a center
point [Kazhdan et al. 2004].

SR(f )[γ ] =
∫ ∫

f (r, θ )f (r, θ + γ )rdrdθ

||f ||2 (3)

This function is one-dimensional (it is shown in the inset images as
a blue curve offset further from the center at rotations with higher
values, where the horizontal line corresponds to 0 rotation), it is
not bijective, it is efficient to compute in the frequency domain,
and it has high values only for rotations that align repeating im-
age elements. We use it for this example because it captures the
rotational pattern of the target image effectively, and to investigate
the generality of our framework with respect to different symmetry
representations.

In Figure 4, the image on the left shows an input photograph of a
star fish; the middle image shows how it was warped when provided
a perfect five-way cross as the target image; and, the image on the
right shows the result of warping when given a four-way cross as a
target. Note that the fivefold rotational symmetry of the star fish is
enhanced in the middle example, while it is (purposely) destroyed
in the example on the right (the star fish moves towards a four-way
cross with an extra leg). In both cases, the input is successfully
warped to have the rotational symmetries of the synthetic target.

5. SYMMETRY PROCESSING

A second way for a user to control the symmetric patterns in an
image is to apply operations to adust its symmetry representation.
For example, one might want to “sharpen” or “blur” the symmetries
of an image to make its repeating patterns more or less prominent.
Or, one might want to adjust the spacing of repeated patterns with-
out deforming fine-scale details of an image. Since these types of
patterns are represented better in the symmetry representation than

Fig. 6. Texture synthesis with pattern processing. In these examples, con-
trast, scale, rotation, and identity filters have been applied to the original
translational symmetry representation (top right) to form a target for texture
synthesis.

they are in the original image, it is natural to adjust them with
filtering operations in symmetry space.

Implementing this idea is very simple within our framework.
Starting with an input image f , we: (1) compute its symmetry
representation S(f ), (2) apply any operation on S(f ) to produce a
new target symmetry representation Starget , and then (3) optimize
f with a perturbation model so that its symmetry representation
S(f ′) matches the processed one Starget as closely as possible (e.g.,
minimizes the L2 difference).

The following paragraphs discuss some example implementa-
tions of this idea and provide results for two applications.

Example 1: Symmetry Filtering. There are cases where a user
would like to control the regularity of repeating patterns in an image,
for example, to fix unwanted distortions in a pattern that should be
symmetric, or to reduce the symmetries in a pattern that should
appear random.
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Fig. 7. Texture tiling. Each pair shows a 3 × 3 repeated tiling of the input texture with seamless blending of edges. Image at the top shows tiling without
symmetry optimization and image at the bottom shows tiling with symmetry optimization. Note that our method handles various scales and types of symmetric
patterns without any user intervention.

Previous approaches have addressed this problem by represent-
ing an image as a 2D lattice describing its underlying repeating
pattern and a deformation field describing how the image deviates
(in geometry and lighting) from the closest image with the repeating
pattern. With that representation, the regularity of an image can be
controlled very naturally by increasing or decreasing the deforma-
tion field. However, this approach only works when the underlying
2D lattice can be extracted from the input image, which is not possi-
ble with automatic for many images, including most of the examples
in this article (as shown in Section 7).

Our approach is an alternative when the input has no detectable
lattice-based model. We utilize approximate symmetry representa-
tions computed via correlations of an image with itself (e.g., ST (f )
and SR(f )) and apply standard signal processing filters to make
adjustments to the pattern. The advantages of using these symme-
try representations (rather than a generator) are: (1) they can be
computed automatically and robustly, since every pixel output by
an autocorrelation combines many elements of the image; (2) they
encode perfect symmetries, partial symmetries, approximate sym-
metries, and even perfect asymmetries, and thus they can describe
patterns that do not have a parameterizable generator; and, (3) they
can be represented as discrete signals in symmetry space (e.g., ST (f )
is an image, and SR(f ) is a histogram), and thus arbitrary filtering
operations can be applied on symmetry representations naturally.

Figure 5 shows examples of controlling the regularity of repeated
elements in an image by applying “sharpen” and “blur” filters on
its translational symmetry representation. The figure is generated
with as-rigid-as-possible perturbation model. The input image f
is shown in the second column (b). The image on its left (a) was Fig. 8. Image symmetrization by unwarping lens distortion.
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Fig. 9. Image symmetrization by as-rigid-as-possible deformation. Input
images (left) are deformed to maximize either reflectional or rotational
symmetries (right).

produced by “sharpening the translational symmetry representa-
tion”, that is, finding the image f ′ whose ST (f ′) is most similar to
ST (f )4 after normalization (

∫ |ST (g)| = ∫ |ST (f ′)|). Note how the
symmetry representation has sharper peaks, causing the image to
become more symmetric. The two images on the right (c and d)
were produced by “blurring the translational symmetry represen-
tation”: applying a Gaussian filter with σ = 2 and σ = 4 pixels,
respectively, and then solving for the deformation of f whose ST

best matches the result. Note how the image becomes more asym-
metric. These filters are intuitive, and the processing pipeline is
automatic, robust, and general (works for many types of symmetry
representations), and thus we believe it provides a useful tool for
controlling symmetries in images.

Example 2: Pattern Processing. Image manipulations that modify
large-scale patterns while preserving fine-scale texture details can
be implemented by combining the filtering approach of this section
with the texture synthesis of the previous section. Specifically, given
an input image f and its computed symmetry representation S(f ), a
filter can be applied to S(f ) to form a target symmetry representation
Starget , and the quilting texture synthesis algorithm can be used to
generate an output image f ′ whose symmetry representation S(f ′)
matches Starget as best as possible.

Figure 6 shows some results produced with this approach. The
input image f (top row left) contains “wavy, partial rows of berries,”
a complex pattern that is not easily described by a lattice-based
model. Yet, the translational symmetry representation ST (f ) (shown

Fig. 10. Comparison of symmetry transfer to a previous method based on
intensity transfer [Efros and Freeman 2001]. The left image was synthe-
sized with intensity transfer, while the right image was synthesized with our
method matching symmetry representations of synthesized texture and a tar-
get. Note that due to little lighting variation in the texture Intensity Transfer
fails completely. Our method does not fail, because it matches correlation
of intensities, rather than intensities. The source image of the gravel texture
(c) euart.

to the right in the top row) is able to capture the pattern, and applying
filters to ST (f ) provides a simple way to modify it.

The middle rows of Figure 6 show the results when Starget is
constructed by a variety of filters: changing the contrast in ST (f ),
scaling ST (f ) by a factor of two, and rotating ST (f ) by ninety
degrees. Please note how the amount of symmetric structure changes
as contrast is added and removed from ST (f ) and how the spacing
between the wavy rows increases when ST (f ) is scaled up, while
the local texture of the berries is preserved. In the rotation result,
horizontal “rows” of berries are synthesized, but the rows are not
nicely shaped due to the limited availability of suitable patches
containing horizontal arrangements of berries in the input image;
perhaps smaller patches (we use 32 × 32 pixels in all examples) or
allowing synthesis with rotated patches would address this problem.

Examining the bottom row of images in Figure 6, we see that
the quilting texture synthesis algorithm reproduces the large-scale
pattern of the input better when guided by the target symmetry
representation than when not. The left image (labeled “Identity”)
shows the result of our symmetry-guided quilting algorithm when
the Starget is the original ST (f ). In contrast, the right image (labeled
“Not Symmetry-Guided”) shows the result of applying the standard
quilting algorithm to synthesize the output image (without trying
to match ST (f )); please note that the large-scale, wavy row pattern
is better preserved in the symmetry-guided result. This difference
suggests that the symmetry representation indeed provides a useful
description of the input pattern.

6. SYMMETRY OPTIMIZATION

A third way to adjust the symmetric patterns of an image is by
optimizing an energy function defined directly on its symmetry
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Fig. 11. We ran state-of-art lattice detection code provided by Park et al. [2009] on all images used in this article (except for Figures 5, 10(a), and 10(b),
where we have used nontranslational symmetries). This figure shows all examples where a lattice was detected at all (blue arrows point to extracted regions,
which are not very visible). Note that a lattice appropriate for our application was detected in only 3 out of 23 images (top-left corner).

representation. For example, it is possible to “symmetrize” an image
by deforming it to maximize the concentration of energy in its
symmetry representation. This type of control requires no target
image or processing operation, just an objective function.

We have investigated the utlity of several types of objective func-
tions defined on symmetry representations. The most natural one
models the “strength of symmetries” in an image by measuring the
variance of its symmetry representation, that is,

Esymm(S(f )) =
∫

‖S(f ) − μ(S(f ))‖2, (4)

where μ(S(f ) is the mean of the symmetry representation. This ob-
jective function will be highest when all the energy of the symme-
try transformation is concentrated on a few transformations (image
has perfectly repeated patterns) and lowest when the image is com-
pletely uniform in color (no patterns at all). As such, optimizing with
respect to this objective function provides a way to symmetrize and
desymmetrize images, operations that can be useful in the following
computer graphics applications.

Example 1: Texture Tiling. Due to memory and complexity con-
straints it is not always possible to synthesize a texture on a large
surface, and thus it is common to use toroidal textures that tile
the plane without noticeable seams (e.g., in OpenGL applications).
However, creating tiling textures from an input photograph is non-
trivial. Seams can be avoided by blurring across the boundaries, but
artifacts in large-scale patterns will be noticeable unless the pattern
is toroidally symmetric (as shown in the top rows of Figure 7).

To address this problem, we optimize textures to maximize the
variance of their translational symmetry representations. In our ex-
periments (Figure 7), symmetry energy (Eq. (4)) is measured for
two input functions: flum and f1−lum, and texture is optimized with
respect to sum of these energies, with the exception of the image

in Figure 7(d), where fedge is used due to high variation in color.
The optimization produces an output image using a texture pertur-
bation model that allows as-rigid-as-possible deformation followed
by mean value coordinate interpolation across toroidal boundaries.
Note that in our perturbation model we start by zooming on the
center of an input tile, leaving 20% (relative to width or height)
boundary pixels which might be pulled in during the deformation.
This process diminishes the asymmetries that would become no-
ticeable in a tiling and avoids visible artifacts near tile boundaries.

Figure 7 shows the results of this process for several examples.
The top row shows the result of tiling the input images without any
processing; note how the repeating tiles are clearly visible due to
breaks in large-scale patterns and discontinuities at tile boundaries.
The bottom row shows the results of tiling the textures output by
our optimization process. Note how large-scale patterns are not
dominated by the tiling structure, and that strong edges continue
seamlessly across tile boundaries. It is important to note that our
processes do not explicitly align edges, but increasing symmetry
automatically favors alignment of lines across boundaries, as well
as in the middle of the texture, which helps to diminish noticeable
artifacts.

Example 2: Image Symmetrization. There are many cases in
which it is desirable to fix the asymmetries in an image to improve
its appearance and/or to simplify further processing. For example,
a user may want to remove distortions in a photographic image of
a symmetric object to eliminate perspective foreshortening and/or
radial distortions due to lens effects. Or, a scientist may want to
“symmetrize” a photograph of a nearly regular structure before
further image processing to simplify search of correspondences be-
tween elements in a repeating pattern.

As in the previous example, this application can be addressed di-
rectly by optimization of the input’s symmetry representation. For

ACM Transactions on Graphics, Vol. 31, No. 3, Article 22, Publication date: May 2012.



22:10 • V. G. Kim et al.

Fig. 12. This figure compares our symmetrization results (middle column)
to those of Hays et al. [2006] (right column). Within each row, the symmetry
representation is shown just below every image, that is, ST for images in
the left and middle columns, and the extracted lattice for images in the right
column.

example, Figure 8 shows how radial distortions can be removed by
optimization of translational symmetries. In this case, the center
of radial distortion was specified manually, and then the space of
images producable by varying the radial lens distortion parameter
in Tsai’s camera model [Tsai 1986] (θlens) was searched for the one
with maximal variance in the translational symmetry representa-
tion. This process automatically straightens the lines between rows
of bricks, which removes the distortion in the image. While this
example may seem contrived, since the input has a regular pattern
in it, we believe that it could be useful to calibrate a camera on-
the-fly, that is, take a picture of highly regular object (like brick
wall) and then use our method to learn the warp applied by the
camera. This process would work without prior knowledge of the
repeating structure in the photographed image, when the repeating
structure is only approximate, and when it would be difficult to fit
a parameterized representation of the pattern.

Figure 9 shows the results of maximizing the variance of other
symmetry representations. The image on the left (a) shows the
as-rigid-as-possible warp that maximizes variance in the reflective
symmetry descriptor (SRef l(f )) described in Kazhdan et al. [2002],
and the image in the middle (b) shows the same for the rotational
symmetry descriptor, SR(f ). Note how the repeated structures of
the images are enhanced, even though the structure is not detected
explicitly.

7. COMPARISON

In this section we compare to alternative methods and discuss ad-
vantages and disadvantages of our approach.

Pattern as intensity field. One can model a low-frequency pattern
as an intensity map overlaid over a texture. If luminance of high-
frequency elements matches the intensity map the result would
resemble a pattern of an underlying intensity map. However, if
the source texture does not have enough illumination variety, the
results obtained by symmetry transfer are significantly better than
the results obtained by intensity transfer. For example, Figure 10
compares our results to a texture transfer method that matches pixel
intensities to a target [Efros and Freeman 2001]. First we quilted
the target to an appropriate size to create the target intensity map,
and then used code provided by authors to perform texture transfer.
In their result (left column), the target pattern was not reproduced
because source texture does not have enough dark regions to create
black points. The texture synthesized with our method (on the right),
however, has similar pattern as the target, because of correlation of
similar colors at the appropriate offsets.

Lattice-based texture synthesis. Some texture patterns are nearly
regular and can be modeled as a warped lattice of texture elements.
In these cases, Park et al. [2009] provide a method to construct a
lattice-based model automatically, and Liu et al. [2004] provide a
method for texture processing and transfer operations using such a
model; these methods could be combined to produce an automatic
system for processing of near-regular textures. While this approach
is preferable when a 2D lattice pattern can be extracted automati-
cally from the input image(s), it is not applicable to the wide range
of examples considered in this article. For example, consider the
target pattern in top-left of Figure 10: The tree trunk has a clear
pattern, but it is definitely not a 2D regular lattice. To test how
many of the examples in this article could have been reproduced
with lattice-based texture processing methods, we ran state-of-art
lattice detection code provided by Park et al. [2009] on all our input
images, restarting the program for each image at multiple scales
and then manually selecting the best result. We found that it was
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Fig. 13. Texture synthesis example demonstrating limitations of the proposed approach.

able to extract any lattice at all for only 8 out of 23 images (shown
in Figure 11). In only 3 of those 8 cases (first two images of top
row and first image of second row), the detected lattice was ap-
propriate for the application demonstrated in our article. For the
others, the detected lattice captured the pattern for only part of the
image (top-right corner) or provided an incorrect model of repeat-
ing elements (bottom row) that would lead to poor results for the
intended application. This result suggests that most of our examples
are not easy to reproduce with alternative methods based on lattice
extraction.

Warping a lattice for symmetrization. We also tested whether
the lattice-based method of Hays et al. [2006] could be used as an
alternative to our method for symmetrizing the images tested in our
article (Figures 7, 16, and 15). Their approach iteratively warps an
image to regularize a detected lattice, and thus it should provide
good results when the correct lattice is detected automatically and
poor results otherwise. Indeed, using the original implementation
provided by the author, we found that Hays et al. [2006] is quite
effective at symmetrizing images with extractable lattice structures.
However, most of the examples in this article are not of that type.
For each of our examples, we show the symmetrized image and
extracted lattice with the best a-score (amongst all iterations for
20 random restarts) in the rightmost column of Figure 12. In these
results, a complete lattice was extracted for only one of the five
examples (Figure 12(d)). For the other examples, Hays et al. [2006]
extracts a partial lattice, and thus would be difficult to use for
symmetrization without noticeable artifacts. For comparison, our
results for these same examples are shown in the middle column of
the figure.

8. DISCUSSION

In this section we discuss limitations of our approach and factors
affecting design decisions and parameter selections in our example
applications.

Limitations of the approach. Our framework is limited to texture
synthesis and processing applications where: 1) the target pattern
has spatial structures with frequencies lower than those in the source
texture, 2) the symmetry representation captures those spatial struc-
tures (not necessarily uniquely), 3) the texture perturbation model
is flexible enough to reproduce large-scale properties of the target
pattern when applied to the source texture, but constrained enough
to retain fine-scale properties of the source texture, and 4) the opti-
mization is constrained to find a (possibly local optimum) solution
that is not trivally equal to the target.

Figure 13 investigates some of these limitations empirically with
a texture synthesis example, where a source texture (green dots)
is used to synthesize images with the six target patterns used in
Figures 1 and 3. Looking at these results, one could conclude that
the target pattern is reproduced in four of the six outputs (all except
the top two in the left column). The system fails to reproduce the
“Random Dots” pattern (top left) because the texture perturbation
model is not flexible enough to generate an output image with
large dots by quilting 32 × 32 pixel patches of small green dots. It
fails to reproduce the “Striped Carpet” pattern (second row on left)
because the dominant frequencies in the source texture are similar to
those of the target pattern. The system also fails to reproduce local
properties of the source texture in some of these examples (there
are seams and oddly shaped dots), but that is mainly a limitation of
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Fig. 14. Per figure details. This table lists combination of modules used to
produce each example in the article. Input signals for symmetry transform
can be flum: luminance of each pixel, f1−lum: inverted luminance, fedge:
an output of the edge detector. Description for symmetry representations
ST , SR, SRef l can be found in Eqs. (2), (3) and Kazhdan et al. [2002] accord-
ingly. Objective functions E2

L,Esymm are defined in Eqs. (1) and (4). Target
in a symmetry space can be obtained either from another example image
(S(g)) as explained in Section 4, or by filtering symmetry representation of
an input (FLT (S(f ))) as explained in Section 5. Finally, perturbation mod-
els and corresponding optimization methods θsynth, θdef orm are described in
Section 4: Example 1 and Example 2, and the deformation model for com-
pensating for radial lens distortion θlens is described in Section 6, Example 2.

our texture synthesis algorithm and reluctance to tune parameters
for each individual example rather than a limitation of the overall
approach.

In spite of these limitations, the framework is quite general. In our
investigation, we have found several combinations of input textures,
target patterns, symmetry representations, objective functions, and
texture perturbation models that produce interesting results within
our framework (see Figure 14 for a complete list of combinations
used for every example in this article). However, our investigation
is far from exhaustive, and we expect others to find other interesting
combinations in future work.

Parameter selection. Selecting an appropriate texture perturba-
tion model is the most difficult aspect of our system. The model must
be flexible enough to reproduce the target pattern, but rigid enough
to preserve local properties of the source texture. In this article, we
experiment with quilting texture synthesis and as-rigid-as-possible
deformation, both of which require selection of parameters to bal-
ance this trade-off.

The quilting texture synthesis algorithm of Efros and Freeman
[2001] requires patch size as its input. In our work, for all textures
synthesized (except for Figure 16), patch sizes were set to 32 pix-
els, with overlap of 12 pixels. Choosing a smaller patch size gives
a more flexible perturbation model, but might synthesize textures
with undesirable seam artifacts and might not preserve desired high-
frequency properties of the input texture. Choosing a larger patch
size is more likely to preserve the local structure of the source
texture, but might be too restrictive to reproduce the target symme-
try pattern. This trade-off is illustrated in Figure 16. The leftmost
image clearly has the linear pattern, such as the target (i.e., the
low-frequency pattern), but also destroys the leaf structure (i.e., the
high-frequency pattern). The rightmost image, on the contrary, cre-
ates a texture that is very similar to the source, but does not resemble
the target linear pattern. Thus, a good selection for a patch size is
to make it proportional to the size of a high-frequency pattern that
one wants to preserve in the input source texture, while keeping it

Fig. 15. Influence of flexibility of deformation on a resulting texture. Note
as the deformation model becomes more flexible, it can potentially create
undesirable textures with too much warping. Similarly, artifacts can appear
if the image is deformed only at higher resolution.

as small as possible. Note that the patch size does not affect the
low-frequency symmetry pattern of the resulting texture as long as
it is small enough so that pattern is achievable.

The as-rigid-as-possible deformation algorithm relies upon a set
of evenly spaced points to control the deformation, and selecting
the number of control points affects the flexibility of the texture per-
turbation model, which in turn affects the results of our algorithm:
More control points allows greater local distortion, which is help-
ful for matching the target, but may introduce unwanted distortion
artifacts in the result. For an example of this effect, please consider
Figure 15, which shows the results of using the as-rigid-as-possible
deformation model with different numbers of control points for
symmetrization of the input image shown on the top left. Note that
the flexibility provided by more control points allows better sym-
metrization at the cost of small local distortions (blue arrows). For
the image warping examples in Figures 5, 9 and 7, we allowed a
user to select between 8 and 128 regularly spaced control points,
depending on the size of features to be preserved in the source im-
age. Selecting the optimal number and position of control points
automatically is an interesting problem, which is beyond the scope
of this article.

Optimization. We use a simple steepest descent search optimiza-
tion procedure for all applications. This procedure is likely to find a
local minimum, and thus a perturbation model could generate a tex-
ture that better matches the desirable pattern. Exploration of other
optimization procedures with more sophisticated strategies can be
a topic for future work.

Timing. Computing the translational symmetry transform for a
250 by 250 image takes 43 milliseconds, and a low-dimensional
perturbation model such as in Figure 8 converges in about 50 itera-
tions, or 5 seconds. Texture synthesis results such as in Figures 1, 3,
and 6 with 512 by 512 pixels were produced with 14000 iterations,
or 3000 seconds. Figures 5, and 9, and 7, with as-rigid-as-possible
deformation took up to 20000 iterations, or 1000 seconds.
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Fig. 16. Influence of patch size on a resulting texture. As patch size gets smaller the space of valid textures increases, thus resulting a solution closer to a
desired symmetry; as patch size increases the solution has less of desired target pattern, but texture quality increases since textures better resemble the source.

These compute times are practical for offline applications like the
ones shown in the article, but they would have to be accelerated sig-
nificantly for interactive scenarios. In certain cases, faster methods
are clearly available. For example, for some symmetry representa-
tions, it is possible to map image-space parameters directly to the
objective function defined in symmetry space and then use gradients
to accelerate the optimization. Also, in some cases, symmetry rep-
resentation can be updated incrementally during the optimization,
which would speed the computation by an order of magnitude for
most of the examples in this article. These optimizations were not
included in our implementations, which were aimed at generality
rather than efficiency.

9. CONCLUSION AND FUTURE WORK

In this article, we have proposed a framework for symmetry-guided
synthesis and processing of textures. Our investigation explored
three different kinds of symmetry-based guidance (transfer, pro-
cessing, and optimization), three symmetry representations (trans-
lational, rotational, and planar reflection), and two texture perturba-
tion models (texture quilting and image warping). Example results
demonstrate that these methods can be applied to a variety of prob-
lems including texture synthesis with symmetry transfer, symmetry
transfer for images, symmetry-space filtering of textures, and image
and texture symmetrization.

In our work we only studied a small space of possible appli-
cations within the proposed framework. In the future research it
would be interesting to apply our framework to perform other im-
age processing tasks like retargeting or in-painting while preserving
original symmetries. Another possible direction is to augment our
texture perturbation model that mainly deals with geometric defor-
mations with a method to change the intensity and color pallete of
pixels. This would allow modeling illumination and color irregular-
ity (e.g., as in Liu et al. [2004]). Another possible application can
arise from extending our work to geometry processing applications
using 3D symmetry representations and perturbation models (e.g.,
mesh deformation). Investigating these and other variations of the
framework are good topics for future work.
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KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003. Graphcut
textures: Image and video synthesis using graph cuts. In Proceedings of
the SIGGRAPH’03 Conference.

LEUNG, T. AND MALIK, J. 1996. Detecting localizing and grouping repeated
scene elements from an image. In Proceedings of the European Confer-
ence on Computer Vision (ECCV’96).

LEWIS, C. 2012. http://www.flickr.com/photos/cloois/17435429/.
LIU, Y., LIN, W.-C., AND HAYS, J. H. 2004. Near regular texture analysis and

manipulation. ACM Trans. Graph. 23, 1.
MATUSIK, W., ZWICKER, M., AND DURAND, F. 2005. Texture design using

a simplicial complex of morphable textures. In Proceedings of the SIG-
GRAPH’05 Conference.

MITRA, N. J., GUIBAS, L., AND PAULY, M. 2007. Symmetrization. In Proceed-
ings of the SIGGRAPH’07 Conference.

PARK, M., BROCKLEHURST, K., COLLINS, R. T., AND LIU, Y. 2009. Deformed
lattice detection in real-world images using mean-shift belief propagation.
IEEE Trans. Pattern Anal. Mach. Intell.

PAULY, M., MITRA, N. J., WALLNER, J., POTTMANN, H., AND GUIBAS, L. 2008.
Discovering structural regularity in 3D geometry. ACM Trans. Graph. 27.

PERIVOLARIS, J. 2012. http://www.flickr.com/photos/dr john2005/
211195030/.

PODOLAK, J., SHILANE, P., GOLOVINSKIY, A., RUSINKIEWICZ, S., AND

FUNKHOUSER, T. 2006. A planar-reflective symmetry transform for 3D
shapes. In Proceedings of the SIGGRAPH’06 Conference.

PORTILLA, J. AND SIMONCELLI, E. P. 2000. A parametric texture model based
on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis.

REISFELD, D., WOLFSON, H., AND YESHURUN, Y. 1995. Context-Free atten-
tional operators: The generalized symmetry transform. Int. J. Comput.
Vis.

SHALLOWEND24401. 2012. http://www.flickr.com/photos/shallowend24401/
295133809/.

SNAPPA2006. 2012. http://www.flickr.com/photos/snappa2006/2106318872/.
TSAI, R. Y. 1986. An efficient and accurate camera calibration technique for

3D machine vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’86).

TURINA, A., TUYTELAARS, T., AND GOOL, L. V. 2001. Efficient grouping under
perspective skew. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’01).

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009. State of the art
in example-based texture synthesis. Eurographics State of the Art report.

WEI, L.-Y. AND LEVOY, M. 2000. Fast texture synthesis using tree-structured
vector quantization. In Proceedings of the SIGGRAPH’00 Conference.

XU, K., COHNE-OR, D., JU, T., LIU, L., ZHANG, H., ZHOU, S., AND XIONG,
Y. 2009. Feature-Aligned shape texturing. In Proceedings of the SIG-
GRAPH’09 Asia Conference.

ZABRODSKY, H., PELEG, S., AND AVNIR, D. 1995. Symmetry as a continuous
feature. IEEE Trans. Pattern Anal. Mach. Intell. 17, 12.

Received June 2010; revised November 2011; accepted January 2012

ACM Transactions on Graphics, Vol. 31, No. 3, Article 22, Publication date: May 2012.


