
Motion Annotation Programs: A Scalable Approach to Annotating
Kinematic Articulations in Large 3D Shape Collections

Xianghao Xu1 David Charatan1 Sonia Raychaudhuri2 Hanxiao Jiang2 Mae Heitmann1

Vladimir Kim3 Siddhartha Chaudhuri3, 4 Manolis Savva2 Angel X. Chang2 Daniel Ritchie1

1Brown University 2Simon Fraser University 3Adobe Research 4IIT Bombay

Abstract

3D models of real-world objects are essential for many
applications, including the creation of virtual environments
for AI training. To mimic real-world objects in these appli-
cations, objects must be annotated with their kinematic mo-
bilities. Annotating kinematic motions is time-consuming,
and it is not well-suited to typical crowdsourcing workflows
due to the significant domain expertise required. In this pa-
per, we present a system that helps individual expert users
rapidly annotate kinematic motions in large 3D shape col-
lections. The organizing concept of our system is motion an-
notation programs: simple, re-usable procedural rules that
generate motion for a given input shape. Our interactive
system allows users to author these rules and quickly apply
them to collections of functionally-related objects. Using
our system, an expert annotated over 1000 joints in under
3 hours. In a user study, participants with no prior expe-
rience with our system were able to annotate motions 1.5x
faster than with a baseline manual annotation tool.

1. Introduction
3D models of real-world objects are essential for AR

and VR, design and advertising, games, and fabrication.
They are also increasingly used in synthetic environments
for training embodied AI agents [11, 29, 16, 26, 22, 27].
For these applications, 3D assets need to have rich anno-
tations of real-world attributes such as material properties,
part compositions, affordances, and kinematics.

The last of these, kinematics, is especially challenging
to annotate, since it encapsulates many details: joint types
(e.g., hinge vs prismatic), joint parameters (e.g., axes of ro-
tation or translation direction), constraints (e.g., bounds on
rotation angle or amount of translation), and indication of
which parts are affected by the joint motion. Creating such
annotations with simple direct-manipulation interfaces re-

quires minutes per model; this is slow for existing public
3D shape datasets [5] and totally infeasible for large com-
mercial repositories containing millions of assets [21, 4].

Massive data annotation is usually accomplished via
crowdsourcing. However, annotating kinematics requires
non-trivial domain expertise in 3D user interfaces, geom-
etry, and which joint parameters produce feasible articula-
tions. This makes the task ill-suited for crowd work. Thus,
prior efforts employed experts with the appropriate back-
ground [25, 27, 30]. However, these efforts use tools for
annotating models one by one, which do not scale to large
repositories and do not effectively use the expert’s time. Our
hypothesis is that experts can be more effective by express-
ing their knowledge via generalizable rules. A single rule
may not work in all cases (e.g. doors with different hinge
structures may need different logic), but a small number of
rules can cover a large set of functionally-related joints.

In this paper, we propose Motion Annotation Programs
(MAPs). MAPs are procedural rules which generate mo-
tion annotations when applied to object parts (i.e. the type,
axis, and range of motion). We present an interactive sys-
tem for an expert to author and apply MAPs to collections of
functionally-related parts. Our interface lets the user inspect
and operate on many related parts simultaneously, speeding
up annotation. Our system also provides automatic sugges-
tions of what parts are functionally-related enough to be an-
notated together, and what rule will work best for each part
in a functionally-related collection. The system learns from
user feedback about these suggestions, making them more
relevant over time to further speed up annotation.

We focus on commonplace indoor objects, whose kine-
matics are governed primarily by prismatic (translational)
and revolute (rotational) joints. We evaluate our system
by annotating objects in the PartNet Mobility dataset [27],
an existing dataset of kinematically-articulated 3D shapes.
With our system, an expert user annotated 1170 joints in
174 minutes. We also conduct a user study of our system,
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comparing it to an interface for annotating objects one by
one. Participants with no prior experience using our system
annotated joints more than 1.5x faster using our system.

In summary, our contributions are:
1. Motion Annotation Programs (MAPs), including a

domain-specific language for authoring them.
2. An interface for authoring MAPs and visualizing their

effects on large collections of related object parts.
3. A learning-based approach for grouping object parts

into collections and suggesting MAPs for parts.
Source code for our system is available at https://

github.com/brownvc/articulations; a running demo
can be found at http://articulations.cs.brown.edu.

2. Related Work
Mobility Analysis of 3D Objects Prior work has looked
at analysis of 3D part mobility. [10] analyze static snap-
shots of articulating objects to predict mobility. [31] co-
segment and predict mobility for pairs of input objects.
Other work has used mobility analysis to improve 3D shape
manipulation [28, 19] or reconstruction [12]. RPM-Net [30]
predicts movable parts and their motions from point cloud
data. Similarly, [25] proposed a neural network for 3D point
cloud mobility prediction. Our work is complementary to
these past efforts: we provide a tool which can quickly and
scalably create the data needed to train these models.

Annotation of Large-Scale 3D Data Prior work has
used experts or crowdsourcing to annotate other proper-
ties of 3D data: categories and orientations [5], segmenta-
tion [6, 32, 1], and salient points [7]. Even with crowd-
sourcing, one-by-one annotation can be prohibitively ex-
pensive. Thus, prior work explored frameworks to scale this
process. PartNet [14] used an expert-defined part hierarchy
and asked crowd workers questions to map object sub-parts
to nodes in this hierarchy. Yi et al. [32] combine manual
labeling, automatic predictions, and user verification to re-
duce annotation time for part segmentation. SceneNN [15]
leverages user interaction to refine automatic segmentations
of 3D scene reconstructions. We provide a tool that enables
a single expert to annotate large-scale data using procedural
rules. This reduces manual effort and the need for quality
control mechanisms essential to crowdsourcing.

Human-in-the-loop machine learning We leverage hu-
man feedback to drive a machine learning system. This has
been termed ‘interactive machine learning’ by [8], who use
human feedback to train an image foreground segmenta-
tion model. Human feedback has also been used for data
transformation, visualization, and natural language transla-
tion [9]. Active learning is a related methodology that has
been adopted for annotating 2D images [2, 3, 18, 23, 24].
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Figure 1. In our system, users annotate kinematic joints. A joint
consists of a moving part (green) and a base part (purple). A part
may be further decomposed into subparts (red).

3. System Overview
This section overviews our motion annotation system:

the input data it requires, the annotations it produces, and
its three core components: motion annotation programs, an
interface for working with them, and a machine learning
model for suggesting which programs to use.

Scope We focus on common indoor objects (doors, cab-
inets, etc.), as these are most necessary for our motivating
applications (e.g., AI agent training). Arbitrary kinematic
mechanisms, such as robots or gear assemblies, are beyond
our scope. Our system supports prismatic (translational)
and revolute (rotational) joints, as these are sufficient for
virtually all motions in the data we consider.

Input The input to our system is a dataset of part-
segmented 3D shapes; such segmentations can be pro-
duced manually, semi-automatically [32], or fully automat-
ically [13]. We use these segmentations to organize the
data into joints. A joint consists of a moving part and the
base part relative to which the moving part moves (Fig-
ure 1). Candidate joints are formed from every pair of con-
nected parts; the user decides which candidate joints are
mobile. Our system does not require semantic part labels,
nor aligned input shapes. More intricate rules can be au-
thored if the input shape parts are further segmented into
sub-parts. The dataset we use for our experiments is both
aligned and contains subpart segmentations.

Output The output of our system is a set of kine-
matic motion annotations. A motion annotation is a tuple
(J , T ,a, c, r, p, [rmin, rmax]), where:

• J = the joint to which the annotation applies.
• T ∈ {Rotation,Translation} = the motion type.
• a ∈ R3 = the axis of motion.
• c ∈ R3 = the center of rotation (if T = Rotation).
• r ∈ R3 = the reference point/vector. For rotations,

this is a vector perpendicular to a which defines where
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Figure 2. Parameters of our kinematic motion annotations.

0◦ occurs. For translations, this is a point along the
axis of motion at which 0 translation occurs.

• p ∈ R = the initial pose of the moving part, relative to
the reference point/vector.

• [rmin, rmax] ∈ R2 = the range of motion.
Figure 2 illustrates these properties. Given such annota-
tions, a kinematic hierarchy can be created by linking to-
gether annotated joints (e.g. where one joint’s moving part
is another joint’s base part). These hierarchies can then be
used for e.g. virtual agents to interact with the object.

Motion Annotation Programs Central to our approach,
these are the procedural rules that produce kinematic mo-
tion annotations for functionally-related joints (Section 4).

Interface An interactive UI for authoring and ap-
plying MAPs, centered around building collections of
functionally-related joints and quickly verifying the effect
of MAPs on all joints in the collection (Section 5).

Learning-based Suggestions We provide learning-based
suggestions of which joints belong in which collections
and which rules apply to which joints. The suggestion
engine learns from user behavior to improve over time.
Our collection-based interface helps here, as each collec-
tion learns its own suggestions (Section 6).

4. Motion Annotation Programs
Figure 3 shows a collection of door joints. A simple rule

can describe most cases of door motion: the door rotates

Center of rotation  : Moving part / base part contact center Axis direction : World Up [0, 1, 0]

Center of rotation:
Moving part second
principal axis endpoint

Figure 3. A simple rule (the world up axis) specifies the rotation
axes of these doors. One rule gives the center of rotation for the
three open doors; a different rule is needed for the closed door.

on the world-up axis, about the contact center between the
door and the frame. However, this rule does not produce
the correct motion for the rightmost door: it was modeled
in a closed pose, so the center of the door-frame contact re-
gion does not coincide with the hinge location. Fortunately,
another simple rule will do here: the center of rotation is
an endpoint of the door’s second principal axis. This rule
will also work on other closed doors, just as the first rule
will work on other open doors. This example highlights the
core principle behind MAPs: by writing a few simple rules
which each apply to a subset of joints, experts can quickly
annotate motions in large 3D shape collections.

Domain-Specific Language To instantiate this principle,
we built a domain-specific language (DSL) for authoring
MAPs. Our DSL is embedded in Python, which we chose
for its popularity within the graphics, vision, and robotics
communities. It also offers features that make DSL embed-
ding easier (e.g. operator overloading).

In our DSL, each MAP is expressed as a Python func-
tion. We refer to these functions as rules. Rules are typed
according to the motion type T . They are also further di-
vided into Axis vs. Range rules, which compute the axis and
range of motion, respectively. We separated axis and range
rules because we found that this increases the re-usability
of individual rules (e.g. an axis rule can be re-used on many
joints which exhibit different ranges of motion).

Axis rules An axis rule takes a joint as input and returns
the axis direction a and axis center c (if T = Rotation).
Figure 4 shows some examples.

Range rules A range rule takes a joint, an axis direc-
tion a, and an axis origin c as input and returns the refer-
ence vector/point r, the initial pose p, and the range of mo-
tion [rmin, rmax]. For rotations, p and [rmin, rmax] represent
counter-clockwise rotation from the reference vector. For



funcdef

return

 (joint):

    origin = joint.moving_part.center 

    axis = joint.moving_part.axis3.direction

     axis, origin

# axis rule (rotation)


0

2

funcdef

return

 (joint, axis, origin):

    moving_lever = default_lever_arm(joint.moving_part,

        axis, origin)

    ref = default_reference_vector(joint.base_part,

        moving_lever, axis, origin)

    current_pose = signed_angle_between(moving_lever, ref, axis)

    min_range = 
    max_range =  * np.pi

     axis, origin

# range rule (rotation)


0


0


funcdef

return

 (joint, axis, origin):

    ref = joint.moving_part.center

    current_pose = 
    length, start, end = get_length_along_dir(joint.moving_part,

        axis)

    min_range = 
    max_range = length

     axis, origin

# range rule (translation)


funcdef

return

 (joint):

    contact = get_contact(joint.moving_part, joint.base_part)

    origin = contact.center 

    axis = joint.base_part.axis1.direction

     axis, origin

# axis rule (translation)


Figure 4. Some example MAP rules. Left: rotation rules (top:
an axis rule for wheel-like motions; bottom: a range rule for 360◦

rotation). Right: translation rules (top: an axis rule for sliding
along the longest axis of the base part; bottom: a range rule for
letting the moving part translate its full length from its initial pose).

translations, they represent offset along the axis of motion
from the reference point. Figure 4 shows some examples.

Data Types The central entities in our system are Joints.
A Joint has a moving Part and a base Part. A Part may
have sub-parts, each of which is a Region (as are Parts, by
inheritance). Region is the base of our type hierarchy; each
Region is a patch of geometry with a centroid and princi-
pal axes; these can also represent contacts between parts, or
arbitrary groupings of parts, subparts, and contacts. Users
write code to extracts relevant Regions from joints and use
their geometric properties to derive motion parameters.

Operators Our DSL provides multiple high-level opera-
tors with which to compute motion properties (see the sup-
plemental material for a complete listing):

Selection operators allow selecting salient Regions from
a joint, from which to extract motion-relevant features. The
get contact(region1, region2) operator computes the
contact region between any two other regions. Our DSL
also provides a jQuery-like API for grouping, sorting, and
filtering sets of Regions by their properties, allowing the
user to zero in on certain geometric features. Such queries
are not necessary for most annotations but are nice to have
for handling rare “corner cases” (see Figure 5).

Feature extraction operators take Regions and extract
features that may be relevant for determining part motion.
For example, get length along dir(region, dir) is
useful for determining how far a translating part can move.

5. Collection-based Interface
Given our DSL, we need an interface for authoring pro-

grams and applying them to joints. Each authored rule can

0

 (joint):

    contact = get_contact(joint.moving_part, joint.base_part)

    origin = contact.center

    sorted_subparts = sort(joint.base_part.subparts, , joint.moving_part.center)

    nearest_subpart = sorted_subparts[ ]

    axis = nearest_subpart.axis1.direction

     axis, origin

func

'center'

def

return

# correct axis rule (based on subparts)


Base Axis 2 Base Axis 3

Moving Axis 1 Moving Axis 2 Moving Axis 3

Base Axis 1Subparts (nearest_subpart is dark purple)

Figure 5. An example of a joint that requires subpart selectors to
annotate correctly. No world space axis, nor any principal axis of
the moving or base parts, aligns with the correct axis of rotation.
The principal axis of one of the subparts does, however.

apply to multiple, functionally-related joints. Thus, the
interface allows: (1) creating collections of functionally-
related joints, and (2) authoring and applying rules to en-
tire collections of joints at once. This section describes our
interface; the supplement includes a demonstration video.

Creating Joint Collections Figure 6 shows our interface.
In the Collections Panel (3) the user creates collections of
related joints to be annotated. The Dataset Panel (2) shows
the database of objects begin annotated; each tile represents
a group of object parts. The Top Bar (1) allows filtering,
sorting, and grouping parts to help users zero in on parts
of interest. Clicking on a group tile expands it into a Shelf
of parts contained within that group (4); this two-level hi-
erarchy supports efficient browsing. Clicking on a collec-
tion in (3) opens the Collection Inspector (5), revealing the
joints with that collection. Joints are color-coded to speed
visual verification: green for moving parts, purple for base
parts, grey for other static parts. Clicking on a part within
(4) brings up a menu of possible base parts for that part;
selecting one adds the resulting joint to the currently-open
collection. Finally, (5) contains a button users can click to
request suggestions of joints to add to this collection. The
system delivers those in the Suggestions Panel (6); the user
can individually accept or reject any of these suggestions.

Authoring & Applying Rules Once the user has added
joints to a collection, they can begin annotating those joints
using MAPs. The user can open the Rule and Motion Editor
(Figure 7) by clicking on the tab by the same name near the
upper-left corner. The Rule List (1) shows the rules the user
has added to this collection; these are the rules available to
be applied to joints and considered for automatic sugges-
tions. The Rule Editor (2) is a text editor which shows and
allows editing of rule source code. The Motion Viewer (3)
shows the joints in the collection as interactive 3D tiles. The
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Figure 6. Our interface for building related joint collections. (1) Users can filter, group, and sort to navigate the dataset (2) more quickly.
Users create collections (3) to which they add related joints (4, 5). Users can also request automatic suggestions of new joints to add (6).

Rule and Motion Editor View
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3

Figure 7. Our interface for authoring and applying rules. Users
can create new rules or import existing rules from a library (1).
Rules are editable Python programs (2). Users can visualize the
effect of rules on multiple joints simultaneously (3).

user can click and drag on these joint tiles to manipulate the
camera; this manipulation propagates to all joints in the col-
lection, keeping their viewpoints synchronized. With this
interface, the user can create rules, edit rules, and request
suggestions for rules to apply to joints in a collection.

6. Learning-based Suggestions
Here we describe how suggestions are computed using

models trained on user feedback. The main challenge is
the limited training data, as the models must provide useful
suggestions without much user input. Grouping joints into
collections enables us to train separate learners per group.

Joint Suggestions Each collection trains a function fjoint
for suggesting new joints to add to the collection. fjoint takes

as input a d-dimensional feature representation of a joint
(see below) and returns a non-negative scalar score indicat-
ing the probability that the joint belongs to the collection.
When the user requests suggestions, the system evaluates
fjoint on all joints in the Dataset Panel, ranks them by their
predicted score, and displays them in the Suggestion Panel.

Rule Suggestions Each collection trains a function faxis
for suggesting axis rules for joints. faxis takes as input a
d-dimensional joint feature vector, a 3-dimensional axis di-
rection, a 3-dimensional axis origin, and a binary indicator
of motion type (translation vs. rotation), and returns a scalar
score indicating the probability that the axis is a correct an-
notation for the given joint. When the user requests an axis
suggestion for a joint, the system executes all axis rules in
the collection on that joint, evaluates faxis on their outputs,
and returns the one with the highest score.

Range rule suggestion works analogously to axis rule
suggestion. Each collection trains a function frange for sug-
gesting range rules. This function expects the same inputs
as frange, plus a 2-dimensional vector encoding the lower
and upper bounds of the motion range and a 3-dimensional
reference vector for these bounds. As with axis suggestion,
the system executes all available range rules on a joint and
returns the one with the highest score.

Joint Feature Representation The first input to each of
the above learned functions f is a feature descriptor of a
joint. We train a joint autoencoder whose bottleneck layer
becomes our feature representation. This representation is
trained without supervision, prior to any user annotations;
it just requires part-segmented 3D models from which to
construct candidate training joints. We use a point cloud
autoencoder [17]; Figure 8 illustrates our point cloud rep-
resentation. In addition to position, each point also has (a)



Input Joint Mesh Part Label Point Cloud Distance-to-Contact Point Cloud

Figure 8. The point cloud representation we use for pre-training a
joint feature representation. Each point has a base part vs. moving
part label and a distance to the nearest point in the other part.

a binary label indicating whether the point is sampled from
the base part or the moving part and (b) a scalar value in-
dicating the distance to the closest point on the other part.
This second feature communicates which points are closest
to the moving/base contact region.In the supplemental, we
analyze the structure of the learned joint feature space.

Learning Model We explored two options for learning
each f from very few labeled examples: a discriminative
approach using a random forest binary classifier (output
score = classifier confidence) and a generative approach
using a Gaussian kernel density estimator (output score =
probability density). In both cases, we concatenate all in-
puts into a single vector that is fed to the model.

The generative approach works best with very few ex-
amples but does not support negative examples (it estimates
the distribution from which positive examples are drawn).
Thus, it does not respond to negative feedback. The dis-
criminative approach requires more examples to produce
useful suggestions and requires both positive and negative
examples. Thus, we use a hybrid approach. When both
positive & negative examples are available, we train a dis-
criminative model. With positive examples only, we train
a generative model. With negative examples only, we train
a generative model and return the negative probability den-
sity of the input point as the scalar score (i.e. prefer lower-
probability points).

Training Examples For joint suggestions, positive exam-
ples are (a) joints that the user adds to a collection and (b)
suggested joints that the user accepts. Negative examples
are suggested joints that the user rejects. For rule sugges-
tions, positive examples are (a) rules that the user assigns to
joints and (b) suggested rules that the user accepts. Negative
examples are suggested rules that the user rejects.

Timing Joint suggestion takes less than 1 second for large
number of joints; rule suggestion takes less than 4 seconds
for reasonably large number of joints and rules (refer to sup-
plemental for details). These runtimes are sufficiently fast
to support interactive usage.

Rules
Axis Range

Time Joints Collections New Lib New Lib

174 mins 1170 20 2 16 10 4

Table 1. Using our system, an expert user was able to annotate
over 1,000 joints in under three hours. They used 20 collections
and 32 rules (18 axis, 14 range). For axis annotation, library rules
mostly sufficed; motion ranges required more custom rules.

7. Results & Evaluation

We evaluate our system both with an expert user and with
new users previously unfamiliar with MAPs.

Implementation Details We implemented our motion an-
notation system as a web application (React + WebGL fron-
tend; node.js + Python backend). For our experiments,
we ran this implementation on AWS EC2 instances with 8
Xeon E5-2686 (2.30GHz) with 32 GB RAM.

Data We use the PartNet-Mobility dataset [27], the cur-
rent state-of-the-art dataset for kinematically-articulated 3D
shapes (14, 068 annotated articulated joints, 2, 346 objects,
46 object categories). We choose a dataset with existing
kinematic motion annotations so that we have ground-truth
annotations to which to compare the ones produced by our
system. This dataset was extended from PartNet, which pro-
vides hierarchical part segmentations. We convert these part
hierarchies into two-level part + subpart segmentations by
(a) using the motion part annotations from PartNet-Mobility
as top-level parts and (b) using the the lowest level of the hi-
erarchy provided by PartNet-Mobility as subparts.

Re-annotation Study First, an expert user (one of the
authors) re-annotated objects from the PartNet-Mobility
dataset. Table 1 shows some statistics from this re-
annotation effort. Our expert annotated 1170 joints in 174
minutes, an average rate of 6.72s joint/minute.

Figure 9 shows some collections created by our expert
user as well as statistics of all collections. Joints from the
same object category often have a high degree of shape sim-
ilarity, so that they can be grouped together into one collec-
tion. Within each collection, typically a few rules suffices
to annotate a large number of joints.

Figure 10 analyzes our expert’s rule usage. Most col-
lections require few rules to annotate. There are some
“custom” rules created for only one collection, and some
general-purpose rules used across collections. The most-
used axis rule was putting the world-up axis through the
center of the moving part (mostly due to keyboard keys, of
which there are many in PartNet-Mobility).



Figure 9. A sample of the joint collections created by our expert
user, along with representative joints for each one, plus histograms
of the number of joints per collection and number of rules used per
collection. See the supplemental material for more.

User Study We also conducted a user study to gauge the
performance of our system when operated by other users.

Experimental task. Participants were tasked with anno-
tating articulated joints from a subset of PartNet-Mobility.
They were instructed to try to annotate as many joints as
possible in the allotted time (one hour). We chose a sub-
set of objects to annotate that covered a range of motion
types, to exercise our system’s capabilities: hinge motions
(16 Door + 64 StorageFurniture objects), swiveling motions
(17 Knife + 12 USB + 10 Fan objects), and retracting mo-
tions (9 Knife + 11 USB objects). The total number of ob-
jects (139) was chosen such that participants would have
enough work for at least an hour (based on the performance
of our expert user) but would not feel overwhelmed.

Experimental conditions. Our study had two experimen-
tal conditions. In the Ours condition, participants used our
system to annotate joints. In the Manual condition, partici-
pants used an alternative interface for manually annotating
objects one at a time by directly adjusting axis, center, and
range of motion values (see supplement for a video).

Participants. We recruited 16 participants (8 per condi-
tion). Participants were university students and staff with
Python and computer graphics experience. Participants first
watched a short tutorial video demonstrating their assigned
interface. They then practiced using this interface on a dif-

ferent subset of PartNet-Mobility. Finally, they were given
one hour to perform annotations. Afterwards, participants
filled out a brief exit survey.

Number of annotations. Figure 11 plots the total number
of joints annotated per minute between the two conditions,
as well the number which are also annotated in the ground
truth PartNet-Mobility data. This number is smaller than
the total number, as users may annotate joints that were not
annotated in PartNet-Mobility. This can happen due to an
ambiguous choice of base part (e.g. does the cap of a USB
stick move with respect to the stick, or does the stick move
with respect to the cap) or due to the participant interpret-
ing the joint differently than the original PartNet-Mobility
annotator (e.g. viewing a vertically-opening cabinet door
as a cover that slides up and down). Participants using our
system annotated more than 1.5x times as many joints than
those using the manual baseline. Dotted references lines
shows the annotation rates of our expert user on the same
set of joints. There is a learning curve associated with our
system, such that more familiarity leads to significant per-
formance increase. In contrast, the expert only performs
slightly better than the participants with the manual system,
suggesting that this interface has limited peak performance
regardless of experience or familiarity.

Annotation accuracy. We evaluate accuracy via three
metrics: 1) Axis direction error: angular difference between
the annotated and ground truth axis direction, in degrees. 2)
Center of rotation error: distance from the annotated cen-
ter of rotation to the line defined by the ground truth rotation
axis + center, as percentage of the object’s bounding box di-
agonal length. 3) Range error: the intersection over union
(IoU) of the annotated and ground truth motion ranges. Fig-
ure 12 plots these metrics for both conditions. Annotations
produced by both interfaces have less than 1◦ of axis direc-
tion error, indicating that this task is fairly easy. Annotating
the center of rotation is more difficult, though easier in our
system. Both conditions produced a wide variety of motion
range errors. This is not surprising, as motion range is more
ambiguous (e.g., how far does a door swing open?).

Suggestions. 6/8 participants used joint suggestions; 5/8
participants used rule suggestions. Acceptance rates were
low, as the user typically accepts the few good suggestions
for their use case and then rejects the rest. The supplement
provides a more detailed breakdown of suggestion usage.

Qualitative Feedback. Participants who used our system
found the overall design of the interface intuitive, includ-
ing the visualizations of joints and motions. Many com-
mented positively on the joint suggestions, noting that the
suggested joints are usually the ones they want. Participants
were mixed on rule suggestions: some preferred manually
assigning rules to joints, as the number of joints to anno-
tate was not that large. Rule suggestions may become more
valuable as the size of the dataset increases. Participants



Figure 10. Analyzing the rules used by our expert using histograms of the number of joints to which each rule applies and the number of
collections in which each rule is used. We also highlight two frequently-used rules and two rarely-used rules.
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Figure 11. Box-and-whisker plots for the annotation rates of par-
ticipants in our user study (joints/minute). We report the total
number of joints annotated as well as the number with a match-
ing annotation in the PartNet-Mobility data. The performance of
our expert user with each interface is shown using dashed lines.

were split on the ease-of-use of writing rules. Half felt that
the DSL was well-designed and easy-to-learn, and that the
rule library was well-organized and useful. The other half
felt that mastering this system in an hour was too tall an or-
der. One such participant felt confident they could become
an expert user given a few more hours.

8. Conclusion & Future Work
We presented Motion Annotation Programs, a new ap-

proach for scalably annotating kinematic motions in 3D
shape collections. We designed a DSL for authoring MAPs,
an interface for applying them to collections of joints and
verifying the results, and learning-based suggestions for
further speeding up annotation. We evaluated the approach
by reproducing motion annotations from PartNet-Mobility
and by showing that previously-untrained users could anno-
tate 1.5x faster than manual annotation using our system.

We could combine our approach with the ease-of-use by
synthesizing rules from example manual annotations. In
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Figure 12. Box-and-whiskers plots for annotation errors made by
participants in our user study. The performance of our expert user
with each interface is shown using dashed lines.

many cases, this would reduce to finding a library rule that
agrees with the examples. In general, one could synthesize a
new rule by searching a reduced space of possible programs
with a constraint-based program synthesizer [20].

Our work focused on making a single expert annotator as
efficient as possible. One could also explore whether multi-
ple experts can work together to be even more efficient.

Finally, annotation via expert-authored rules could be ap-
plied to segmenting 3D scans, constructing hierarchical ob-
ject decompositions, and more. Our work points the way
toward a new “3D data programming” that will help scale
3D data annotation to the future demands of AI systems.
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