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Abstract

Point clouds provide a compact and efficient represen-
tation of 3D shapes. While deep neural networks have
achieved impressive results on point cloud learning tasks,
they require massive amounts of manually labeled data,
which can be costly and time-consuming to collect. In this
paper, we leverage 3D self-supervision for learning down-
stream tasks on point clouds with fewer labels. A point
cloud can be rotated in infinitely many ways, which pro-
vides a rich label-free source for self-supervision. We con-
sider the auxiliary task of predicting rotations that in turn
leads to useful features for other tasks such as shape clas-
sification and 3D keypoint prediction. Using experiments
on ShapeNet and ModelNet, we demonstrate that our ap-
proach outperforms the state-of-the-art. Moreover, features
learned by our model are complementary to other self-
supervised methods and combining them leads to further
performance improvement.

1. Introduction

As a concise and expressive form of representing 3D
shapes, point clouds are ubiquitous in various 3D vision
tasks. Massive point cloud datasets have become available
with the development of 3D scanning devices and tech-
niques. ShapeNet [9], ModelNet [86] and ScanNet [ 1]
are instances of such datasets. Models such as Point-
Net [58] have achieved impressive results on these datasets.
However, manually annotating these large amounts of data
is costly and impractical to scale. This raises the need
for methods that can learn from unlabelled data to re-
duce the number of annotated samples required for learn-
ing. Recently, self-supervised learning have shown promis-
ing performance on several computer vision tasks. Self-
supervision is a learning framework in which a supervised
signal for a pretext task is created automatically, in an ef-
fort to learn representations that are useful for solving real-
world downstream tasks.
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A simple form of self-supervision is predicting rota-
tions [20]. This approach has achieved state-of-the-art re-
sults on image classification [35]. In this paper we propose
the first self-supervised approach based on rotations of 3D
data. Among various 3D representations, we focus on point
clouds as an efficient representation in which rotations can
be easily applied via matrix multiplication. Manually an-
notating point clouds to provide information such as cat-
egory labels or keypoints is cumbersome and costly. No-
tably, most public 3D models have a canonical orientation,
or at least a known up axis. We can leverage this orienta-
tion information to provide a label-free supervision signal
for downstream tasks. More specifically, we can arbitrarily
rotate an input point cloud and train a model to recover the
rotation angle. The auxiliary task of predicting these rota-
tions requires high-level understanding of 3D shapes, since
canonical orientation of the object implicitly encodes im-
portant information about its functionality [16].

We demonstrate that a model trained for this proxy task
generates semantic features useful for target tasks such as
classification and keypoint prediction. We show that simple
models such as SVMs can be trained on these features and
achieve strong performance even when trained on a small
subset of the training data. Hence, our approach facilitates
learning with fewer labels, and obviates the need for man-
ually annotating massive datasets. Finally, we discuss how
our approach can be combined with other self-supervised
models to achieve further performance gain, indicating that
our learned features provide complementary information to
other methods.

2. Related Work
2.1. Deep Learning on Geometry

There has been a recent surge of interest on learning-
based approaches on geometric data [6, 10, 64, 84, 86].
These models are able to encode rich prior information
about the space of 3D shapes which helps to resolve am-
biguities in the input. Typical convolutional architectures
require highly regular input data formats such as image
grids or 3D voxels. Unlike images, geometry usually does



not have an underlying grid structure, requiring new build-
ing blocks replacing convolution and pooling or adapta-
tion to a grid. As a simple way to overcome this is-
sue, view-based [72, 83, 57] and volumetric representa-
tions [34, 43, 74, 86] or their combination [59] place geo-
metric data onto a grid. Voxel representations are a straight-
forward generalization of pixels to the 3D case. However,
the memory footprint of these representations grows cubi-
cally with resolution. Data adaptive representations such
as octrees [60, 74] mitigate this issue, yet they lead to com-
plex implementations and are still limited to relatively small
voxel grids.

Point clouds provide a more efficient representation by
only focusing on surface points, yielding a tensor with a
fixed number of 3D coordinates [1, 15]. Point clouds as
an input modality present a unique set of challenges when
building a network architecture. The grid structure is not
available in raw point clouds as unordered sets of points.
To address this issue, Qi et al. propose PointNet [58] which
respects permutation invariance of point clouds by using a
max-pooling operation to form a single feature vector repre-
senting the global context. PointNet++ [60] extends Point-
Net by recursively applying it on a nested partitioning of
the input point set. Kernel correlation and graph pooling
are proposed for improving PointNet-like methods in [70].
PointCNN [39] leverages spatially-local correlations using
a x-Conv operator that weights and permutes input points
and features before they are processed by a typical convo-
lution. PointConv [85] and Relation-Shape CNN [4 1] also
focus on local structures of point clouds and further improve
the quality of captured features. Recently, graph convo-
lutional networks have shown promising results on learn-
ing tasks on point clouds. Dynamic Graph CNN [81] ap-
plies a graph convolution to edges of the k-nearest neighbor
graph of the point clouds, which is dynamically recomputed
in the feature space after each layer. While the aforemen-
tioned models achieve great performance on various tasks,
they require large number of annotated samples for train-
ing. Hence, there is a need for efficient methods with less
supervision.

Learning-based approaches have been applied to several
other geometric representations such as meshes [30, 62, 78,

], implicit functions [44, 52, 87, 55] and structured mod-
els [38, 97, 96]. We refer the interested reader to [7/] for a
survey on geometric deep learning.

2.2. Unsupervised and Self-Supervised Learning

The goal of unsupervised learning is to learn representa-
tions from raw data without the use of labels such that they
are easily adaptable for other tasks. A common approach in
unsupervised learning is leveraging generative models such
as Variational AutoEncoders (VAEs) [32, 33, 65], Gener-
ative Adversarial Networks (GANs) [21, 26, 61, 31] and

autoregressive models [22, 76, 77]. Another prominent
paradigm is self-supervision, which defines an annotation-
free pretext task in order to provide a surrogate supervision
signal for feature learning. Example pretext tasks include
colorizing gray scale images [36, 92, 93], image inpaint-
ing [54], noise-as-targets [5], generation [29, 63], geom-
etry [14], counting [48] and clustering of images [8, 40,

]. Other methods use additional information such as
temporal data to learn features. Typical proxy tasks are
based on temporal-context [45, 82, 68], spatio-temporal
cues [27, 19, 80], foreground-background segmentation via
video segmentation [53], optical-flow [18, 42], future-frame
synthesis [71], audio prediction from video [12, 51], audio-
video alignment [3], ego-motion estimation [28], slow fea-
ture analysis with higher order temporal coherence [28],
transformation between frames [2] and patch tracking in
videos [79].

Several papers consider predicting the spatial relation be-
tween two randomly chosen image patches [ 13, 46, 47, 49].
An extension of this idea to 3D representations is presented
in [67]. Our work bears a resemblance to [20] which ran-
domly rotates an image by one of four possible angles and
let the model predict the rotation. [50] proposes to pre-
dict future patches in representation space via autoregres-
sive predictive coding. An overview and comparison of
various 2D self-supervised learning algorithms is provided
in [35, 4].

Recently, various methods have been proposed for un-
supervised learning of point clouds. Autoencoder-based
approaches learn features through reconstructing the point
cloud data [1, 17, 89, 94]. Generative models learn rep-
resentations in the process of generating plausible point
clouds [37, 73, 75, 84]. Concurrent to our work, various
pretext tasks have been proposed for self-supervision on
point clouds. Sauder et al. propose to learn features by re-
constructing point clouds whose parts have been randomly
rearranged [67]. Zhang et al. train deep graph neural net-
works to solve two proxy tasks, part contrasting and ob-
ject clustering [91]. A multi-task learning framework is
proposed in [24] which learns features by optimizing three
different tasks including clustering, prediction, and recon-
struction. Our approach requires more holistic understand-
ing of shapes, and is relatively easy to implement. As we
demonstrate in experiments, our model outperforms several
competing methods, and can also be combined with them to
achieve further performance gain.

3. Method

Inspired by the success of self-supervised learning on
images, we propose a self-supervised method to learn
representations of point clouds. We consider the proxy
task of rotation prediction. A set of K rotations R =
{R1,Ra, ..., Ri }isused, where R;(X) rotates upward di-
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Figure 1: Model architecture. A rotation angle is randomly sampled from the set of possible angles and applied to the input
point cloud. The rotation prediction model is trained to infer the rotation angle from the rotated point cloud. Features from
the rotation prediction model are passed to a linear SVM which is trained to infer the shape category.

rection of the input point cloud X to the i angle. We train
a classifier F'(+) to predict the rotation applied to the input
point cloud. The model takes a transformed point cloud
R;(X), with R; randomly selected from R, and outputs a
probability distribution over all possible rotations. We train
the model using cross-entropy loss in a supervised manner.

Figure 1 illustrates our architecture. Our models are
based on PointNet [58] and DGCNN [&1] in which the fi-
nal layers are modified for rotation classification or regres-
sion. The classifier outputs K probabilities and the regres-
sion model outputs four real numbers (three for the rota-
tion axis and one for the rotation angle). The features from
the rotation prediction model are then used for several tar-
get tasks including classification and keypoint prediction.
ShapeNet [9], a large scale dataset of 3D shapes, is used to
train the rotation estimation model. 3D models in ShapeNet
are annotated with upright and front orientations, allowing
us to align them to a canonical orientation.

Number of angles K is a hyper-parameter. Using a small
K gives a high accuracy on rotation prediction while might
not yield the best features for downstream tasks since pre-
dicting a small number of rotations is a simple task. On the
other hand, a very large K gives a low accuracy on rotation
prediction as angles become closer to one other. Table 1
shows the rotation classification accuracy for different val-
ues of K. As we observe, the accuracy decreases for larger
K values.

For a given choice of K we need to select the angles
as uniformly as possible to avoid bias in learning. Ide-
ally, we can consider a regular polyhedron with K vertices.
However, regular polyhedra do not exist for all values of
K, hence we resort to approximate solutions for custom K

’ Number of rotation angles /K \ Prediction accuracy ‘

6 99.8%
18 89.0%
32 90.3%
54 67.8%

100 1.6%

Table 1: Rotation classification accuracy on ShapeNet
based on the number of angles K.

values. We consider a range of small to large values for
K including 6, 18, 32, 54 and 100. For six rotation angles,
we choose the six directions of the +x, +y, +2z axes. For
K = 18, we take directions of the six axes and the twelve
angle bisectors for each two consecutive axes. For K = 32,
a regular icosahedron is centered at the origin, and direc-
tions towards its 12 vertices and 20 face centers are chosen.
For K = 54,100, we use the golden spiral sunflower distri-
bution, where the golden ratio is 1+2\/5. Figure 2 illustrates
the distribution of angles for various K values.

Alternatively, we can train a model to regress the angles
instead of classifying them. We consider two rotation repre-
sentations for the regression task: axis-angle and a continu-
ous 6D representation presented in [95]. For the axis-angle
representation, we first randomly select an axis by sampling
coordinates z,y,z ~ N(0,1) and normalizing the result-
ing vector (,y, 2)T to have a unit norm. It can be shown
that the resulting vectors are uniformly distributed on the
unit sphere. We then sample a random angle, and rotate the
input point cloud using the sampled axis and angle. A re-



(a) K = 6: directions are on the +x, +y, =2 axes.

(b) K = 18: directions on the xy-plane are blue; di-
rections on the xz-plane are green; directions on the yz-
plane are red.

(¢) K = 32: directions are towards the vertices and face centers of (d) K = 54,100: the points conform to the golden

the regular icosahedron.

spiral sunflower distribution.

Figure 2: Illustration of the rotation angles. The object is placed at the origin, and its upward direction is rotated to one of

the K marked points.

gression model is the trained to regress the axis of rotation
and the rotation angle with respect to this axis. We train the
model with Ly loss using a linear combination of axis and
angle prediction losses with equal weights.

We also consider the representation proposed by Zhou et
al. [95]. They demonstrate that for 3D rotations all repre-
sentations are discontinuous in the real Euclidean spaces of
four or fewer dimensions. They present continuous repre-
sentations in 5D and 6D which are more suitable for learn-
ing. We use the 6D representation and consider a similar
setup as their experiment on pose estimation for 3D point
clouds. The network consists of a simplified PointNet struc-
ture for feature extraction and an MLP to produce the 6
dimensional rotation representation. A mapping function
transforms this representation to SO(3). Note that while
they estimate the relative rotation between two point clouds,
we predict the rotation of a single point cloud with respect
to a canonical orientation.

Finally, we use the trained rotation estimation model to
extract features for downstream tasks. These features are

passed to a linear SVM for shape classification. In the
keypoint prediction task, we modify final layers of the an-
gle prediction model and fine-tune it for keypoint regres-
sion. We train the rotation estimation and target models on
ShapeNet and ModelNet respectively.

Note that our method assumes that the shapes have been
consistently aligned, but this is a common assumption in
online stock repositories. We can extend our approach to
predict the relative rotation between point clouds either in a
supervised or unsupervised manner. In the supervised case
we use ground truth orientations, and it is quite similar to
our current setup. In the unsupervised case we can align
a point cloud to a rotated version of itself. We can esti-
mate the relative rotation, apply it to one of the point clouds
and use a chamfer loss to penalize misalignment. The lat-
ter case enables learning even in the absence of canonical
orientations. However, the learned features might not be as
transferable as current features. We will further explore this
direction in future work.
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Figure 3: Linear SVM’s classification accuracy on ModelNet-40 for different sizes of training set.

4. Experiments

We demonstrate that features learned by the rotation pre-
diction model are useful for downstream tasks. We consider
two tasks: shape classification and 3D keypoint prediction.

4.1. Shape Classification

We consider the task of shape classification on Model-
Net [86]. Using the rotation prediction model trained on
ShapeNet, we generate features for ModelNet-40’s train
split. We use the global activations after the max pooling
layers of PointNet and DGCNN as we found them to yield
the best performance. A linear SVM classifier is trained on
these activations for the task of predicting the shape cate-
gory. This experiment evaluates the learned features in a
transfer learning task, demonstrating their generalizability.
Figure 1 illustrates the architecture. Note that the rotation
estimation model is trained on the ShapeNet dataset while
the linear SVM is trained on features from ModelNet.

Table 2 shows accuracy of the linear SVM on the test set
of ModelNet-40. It also compares our model’s performance
with various competing methods. As we observe, our ap-
proach outperforms competing methods. Note that the ac-
curacy depends on the number of angles, with K = 18, 32
achieving the best performance. Using too large or too
small values for K leads to inferior performance as the ro-
tation prediction task becomes too difficult or too easy.

We can also combine our approach with other self-
supervised learning methods. More specifically, we con-
catenate the features learned by our model with features ex-
tracted from the context prediction model [67] and train the
SVM classifier on the combined features. As shown in Ta-
ble 2, this leads to improved performance compared to indi-

Previous work

VConv-DAE [69] 75.50%
3D-GAN [84] 83.30%
Latent-GAN [1] 85.70%
FoldingNet [89] 88.40%
VIP-GAN [23] 90.19%
Context Prediction (DGCNN) [67]  90.64%
Context Prediction (PointNet) [67] 87.31%
Ours (DGCNN)
6 angles 90.06%
18 angles 90.75%
32 angles 89.41%
Ours (PointNet)
6 angles 87.5%
18 angles 88.5%
32 angles 88.6%
Ours + Context Prediction 91.84 %

Table 2: Test accuracy on ModelNet-40 shape classification
using the pretext task of rotation classification on ShapeNet.

vidual models, demonstrating that our approach learns com-
plementary features to other self-supervised methods. Intu-
itively, our rotation estimation model learns global orien-
tation information while [07] learns part-level information
required for the task of context prediction. Both of these
information sources are useful for the shape classification
task, therefore combining them leads to improvements over
each individual model.
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Figure 4: PCK curves for the keypoint prediction task. Left: our approach outperforms competing methods for all error
thresholds. Right: PCK curves for various sizes of the training set.

Continuous 6D [95] 86.16%
Axis-angle (PointNet) 85.51%
Axis-angle (DGCNN) 83.12%

Table 3: Test accuracy on ModelNet-40 shape classification
using the pretext task of rotation regression on ShapeNet.
Different rotation representations are considered.

We can also estimate rotations via regression instead of
classification. As described in Section 3, in this approach
we aim to regress the exact rotation angle rather than a dis-
cretized approximation of it via K pre-selected angles. We
consider the axis-angle representation with PointNet and
DGCNN backbone architectures, as well as the 6D repre-
sentation in [95] with a simplified PointNet structure. We
train the rotation regression model on ShapeNet and use it
to extract features from ModelNet samples. A linear SVM
classifier is trained on these features. Table 3 shows the ac-
curacy on ModelNet-40’s test set. We observe that features
learned from the regression model achieve inferior perfor-
mance compared with the classification model. Regress-
ing the exact rotation angle is a challenging task. It resem-
bles our classification setting with K — oo which does not
yield the best performance. The learned features become
too task-specific and not as transferable to a shape catego-
rization task.

We also study dependence of our model on the size of
the training set. We vary ModelNet-40’s train set size for
the linear SVM. A certain percentage of data is randomly
sampled and used to train the classifier. We then evaluate

the model’s accuracy on the full test set of ModelNet-40.
Figure 3 depicts the linear SVM'’s classification accuracy
as size of the training set varies from 1% to 100%. The
results indicate that we still have a relatively strong perfor-
mance even when a small number of annotated samples are
available. The features learned from the rotation prediction
model contain information useful for the classification task.
Therefore, a simple classifier trained with moderate super-
vision suffices to achieve high accuracy.

4.2. 3D Keypoint Prediction

We also consider the task of 3D keypoint prediction. We
use the training data provided by [90] which includes 10
keypoints for each object in ShapeNet’s chair category. We
pre-train a model for rotation prediction and fine-tune it for
keypoint regression. More specifically, we first train a ro-
tation prediction model (on all categories) and then modify
its final layers to regress 10 keypoints for each input shape.
The regression network is initialized with weights of the
rotation prediction model and then fine-tuned with cham-
fer loss between predicted and ground truth keypoints. At
inference time, we map each regressed point to its nearest
neighbor point in the input point cloud.

PCK' curves for our approach are shown in Figure 4,
and are compared with [90] and [25]. We observe that
our method outperforms competing methods for all error
thresholds. We also plot PCK curves for various sizes of the
training set and see that our model achieves a good perfor-
mance even when trained on a subset of training data. Note
that compared with the shape classification task, keypoint
prediction relies more on local and part-level information.

IPercentage of Correct Correspondences



Figure 5: Visualization of predicted (red) and ground truth (black) keypoints. Each row represents a separate object from
different viewpoints. Zoom in for details.



Our results indicate that our self-supervised approach can
transfer useful local and global information. We visualize
the keypoints in Figure 5. We observe that predicted and
ground truth keypoints are close to each other, and in many
cases they overlap.

5. Conclusion and Future Work

We present a self-supervised approach for learning rep-
resentations of 3D point clouds. A supervised signal for the
pretext task of rotation prediction is created to learn repre-
sentations that are useful for solving target tasks. We de-
vise models for learning proxy and downstream tasks, and
demonstrate results on shape classification and 3D keypoint
prediction. The results indicate that our approach achieves
superior performance to competing methods. Each self-
supervised learning method learns features tailored for its
own proxy task. We demonstrate that features from dif-
ferent models can complement one another and outperform
each individual model. Finally, we show that only a small
subset of the training data suffices to achieve high accuracy
on shape classification, eliminating the need for annotating
massive 3D datasets.

While our work focuses on point clouds, self-supervised
learning can also be applied to other 3D representations
such as meshes, voxel grids and implicit functions. Each
representation has its own merits and disadvantages. Study-
ing self-supervision for different representations is rela-
tively under-explored and devising effective proxy tasks for
various 3D representations is a promising venue for fu-
ture work. We can also consider combining self-supervised
techniques for different representations. Finally, evaluating
our model on other downstream tasks is another direction
for future research.
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