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Figure 1. Starting from just 10 shapes (larger), our method iteratively augments the collection by alternating between training a VAE, and
exploring random perturbations in its low-dimensional latent space guided by a purely geometric deformation energy. Here we show the
1000 most diverse shapes from the first 5K discovered by our method, positioned according to their latent embedding (projected to 2D via
t-SNE). Shapes are colored according to the initial landmark they trace back to, with shapes added in later iterations lighter (greyer) in
color. The augmentation effectively fills in the space between the sparse initial landmarks, and even extrapolates beyond them. It manages
to also interpolate global rotations for samples near the back-facing exemplar, and yields shapes with larger feet-strides (far left), and
crossed arms or feet (front, left and center) even though there are no such initial landmarks.

Abstract

We investigate the problem of training generative mod-
els on very sparse collections of 3D models. Particularly,
instead of using difficult-to-obtain large sets of 3D models,
we demonstrate that geometrically-motivated energy func-
tions can be used to effectively augment and boost only a
sparse collection of example (training) models. Technically,
we analyze the Hessian of the as-rigid-as-possible (ARAP)
energy to adaptively sample from and project to the under-
lying (local) shape space, and use the augmented dataset
to train a variational autoencoder (VAE). We iterate the
process, of building latent spaces of VAE and augmenting
the associated dataset, to progressively reveal a richer and
more expressive generative space for creating geometrically
and semantically valid samples. We evaluate our method
against a set of strong baselines, provide ablation studies,
and demonstrate application towards establishing shape
correspondences. GLASS produces multiple interesting and
meaningful shape variations even when starting from as few
as 3-10 training shapes. Our code is available at https:
//sanjeevmk.github.io/glass_webpage/.

1. Introduction

This paper is concerned with generating plausible defor-
mations of a 3D shape from a very sparse set of examples.
Fig. 1 shows an input of 10 human 3D meshes in differ-
ent poses, and the additional deformations generated by our
method. 3D deformations have a strong semantic element
to them – e.g., a human’s limbs should only bend at the
joints, and then, under normal circumstances, not beyond
certain angular ranges. Arguably, this can only be deduced
in general via learning by example from a dataset.

Unfortunately, in contrast to 2D images, the 3D domain
poses several challenges for data-driven frameworks. Prob-
ably the most significant one is that data acquisition is com-
plex and tedious, making datasets both scarcer and sparser.

Given this data paucity, we tackle the challenge of gen-
erating additional meaningful deformations from a given
(very) sparse set of landmark deformations. Our method
meaningfully augments the sparse sets to create larger
datasets that, in turn, can be leveraged by other techniques
that cannot operate on sparse datasets.

Producing plausible deformations from a few landmarks
is difficult. Linearly interpolating the vertices of two land-
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marks yields highly implausible intermediates. A key in-
sight is that while meaningful deformations are semantic,
they often have a very strong pure-geometric element, e.g.,
they are smooth (i.e., preserve local details) and don’t dis-
tort the shape too much (i.e., local distances are preserved).
However, simply perturbing vertices while minimizing a ge-
ometric energy (e.g., smoothness or metric distortion) gen-
erates artifacts such as smooth global bending or surface
ripples because by itself, the energy is not a sufficient con-
straint. Interpolating landmark pairs, while preserving the
energy, fares better but produces limited variations [1, 25].
Our paper, like other recent approaches [12, 20], advocates
learning a low-dimensional generative latent space which
maps out the underlying manifold jointly defined by the
landmarks, while simultaneously minimizing a deformation
energy. However, these prior methods still require a large
dataset to learn a rich set of variations.

Our core contribution is to address this difficulty with a
novel data augmentation approach that alternates between
latent space training and energy-guided exploration. We
employ supervised learning of a generative space from a
training dataset, a very sparse one, but augment that set
in an unsupervised, geometry-aware way. Specifically, we
train a Variational Autoencoder (VAE) on the given dataset.
After training, we use the eigenmodes of a deformation en-
ergy’s Hessian to perturb and project latent codes of train-
ing shapes in a way that ensures they yield smooth, low-
distortion deformations, which we add back as data aug-
mentation to the input set. We then re-train the VAE on the
augmented dataset and repeat the process iteratively until
the space has been densely sampled. In addition to reduc-
ing spurious deformations, the use of a low-dimensional,
jointly-trained latent space allows low-energy perturbations
of one landmark to be influenced by other landmarks, yield-
ing richer variations. We call our method GLASS.

We evaluate GLASS on several established datasets and
compare performance against baselines using multiple met-
rics. The experiments show the effectiveness of GLASS to
recover meaningful additional deformations from a mere
handful of exemplars. We also evaluate the method in the
context of shape correspondence, demonstrating that our
sampling process can be used as a data augmentation tech-
nique to improve existing strongly-supervised correspon-
dence algorithms (e.g., 3D-CODED [18]).

2. Related Work
Geometric shape deformation. Parametric deformation
methods express 2D or 3D shapes as a known func-
tion of a set of common parameters, and model defor-
mations as variations of these parameters. Such meth-
ods include cages [24], blendshapes [29], skinned skele-
tons [23] and Laplacian eigenfunctions [32]. In con-
trast, variational methods model deformations as mini-

mizers of an energy functional – e.g. Dirichlet [19],
isometric [25], conformal [28], Laplacian [7], As-Rigid-
As-Possible (ARAP) [36], or As-Consistent-As-Possible
(ACAP) [15] – subject to user constraints. In our work
we focus on minimizing the ARAP energy, although our
method supports any twice-differentiable energy function.
There are strong connections between the parametric and
variational approaches, for instance biharmonic skinning
weights [22] (parametric) are equivalent to minimizing the
Laplacian energy (variational). Please see surveys [27, 42]
for a complete discussion. We are also inspired by work on
modal analysis [21], which linearize the deformation space
of a shape in terms of the least-significant eigenvectors of
the Hessian of some energy functional. In the current pa-
per, we effectively perform learned non-linear modal anal-
ysis: starting with a variational formulation – the implicitly-
defined manifold of low-energy perturbations of a few land-
mark shapes – we learn the corresponding parametric repre-
sentation as the latent space of an autoencoder by iteratively
exploring locally linear perturbations.

Our work on data augmentation from a sparse set of land-
mark shapes is related to interpolation/morphing between,
and extrapolation from, sets of shapes. As in our scenario,
the set typically comprises articulations of a common tem-
plate. See e.g. [39] for a survey of classical (non-learning-
based) methods for shape interpolation. Plausible extrapo-
lation is less well-defined, and less studied, in the classical
literature. Kilian et al. [25] extend geodesics of an isometric
energy in the deformation space, though it is restricted to
exploring (and extrapolating) paths between shapes rather
than the full deformation space.

Learned deformation models. Various types of genera-
tive models based on graphical models, GANs, VAEs etc
have been developed to probabilistically synthesize shape
variations. A full treatment is beyond the scope of this
paper, please see surveys such as [11]. Here, we focus
on models which capture the space of smooth deforma-
tions of a given shape. The best-studied domain is that
of virtual humans, beginning with seminal works captur-
ing face [4], bodyshape [2] and pose [3] variations in a
data-driven fashion from scanned exemplars. These works,
like several subsequent ones, rely on variations of principal
component analysis (PCA) to parameterize the deformation
space. Yumer et al. [43] learn a common set of deformation
handles for a dataset. More recent work uses deep neural
networks to learn shape deformation models from training
sets [13,16,31,37,40], and use them for applications such as
non-rigid correspondences [18]. Tan et al. [38] and Huang
et al. [20] regularize a VAE with an energy-based loss. We
use the latter [20] as our choice for energy. However, the
primary role of the energy in our method is to guide explo-
ration for data augmentation.

Crucially, all the above methods rely on extensive train-



ing data. In contrast, we specifically aim to learn mean-
ingful data-driven deformation models under extreme spar-
sity constraints, from just a handful of landmarks indicating
modes of the distribution. While this is broadly related to
few-shot learning scenarios, only a few other papers con-
sider these requirements in the context of geometric shape
synthesis, or without any auxiliary data from other domains.
LIMP [12] is an important recent work that tries to regular-
ize the latent space of a 3D shape VAE by requiring points
sampled on the line segment between two latent codes to
minimize geometric distortion relative to the endpoints. Un-
like our method, LIMP does not explore the full volume of
the hull bounding the training landmarks, or extrapolate be-
yond it – regularization is limited to the web of pairwise
paths. We modified LIMP to work with ARAP energy, and
demonstrate that our method significantly outperforms their
approach on a variety of metrics.

Unsupervised data augmentation. Our work is part of a
wide class of methods for synthetically increasing the size
of training datasets for data-hungry machine learning, with-
out additional supervision. For broad coverage, we refer
the reader to surveys on images [35], time series [41], and
NLP [10]. A particularly relevant recent technique is Deep
Markov Chain Monte Carlo [33], which samples pertur-
bations of training data using MCMC on an energy func-
tional, trains an autoencoder on these samples, and uses
the resulting latent space for lower-dimensional (and hence
faster) MCMC. We observed that on very sparse and high-
dimensional datasets (only a few landmark 3D shapes), the
initial samples of Deep MCMC do not capture meaning-
ful variations, and hence it does not adequately augment
the dataset. Also related are methods that augment clas-
sification datasets with adversarial perturbations along the
gradients of loss functions [17, 34]. In contrast, we seek to
preserve an energy-based loss, and hence eliminate the gra-
dient and other high-change directions from consideration.

3. Method
3.1. Problem Setup

We assume all shapes in a particular input dataset are
meshes with consistent topology. Given a mesh with N ver-
tices V ∈ RN×3 and triangle faces T , a mesh deformation
is simply an assignment of a new position to each vertex, de-
noted as W ∈ RN×3. We consider the input dataset itself as
deformations of a base topology and we are given a sparse
set of n deformation “examples”, W 1, . . .Wn. We assume
access to a deformation energy f(W,W ′) which measures
the distortion of candidate deformation W with respect to
an exemplar deformation W ′, with higher values indicat-
ing more severe distortion induced by the candidate. For
brevity, we omit W ′ and simply write f(W ) to mean en-
ergy with respect to the relevant base shape. We use the As-
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Figure 2. We present GLASS to iteratively build a deformation-
aware VAE latent space and analyzing it to generate new training
samples to augment the original training set. This enables gener-
ation of diverse yet plausible shape variations starting from very
few input examples.

Rigid-As-Possible (ARAP) energy [36] and its latent-space
approximation ARAPReg [20] to measure the deviation of
a deformation from isometry, i.e., how much do geodesic
lengths change with respect to the rest pose V .

We devise a subspace-sampling strategy that adheres to
two properties: (i) it should be data-driven, and contain
deformations from the given sparse set; and (ii) it should
be geometrically-meaningful, i.e., the deformations should
have low energy, wrt the given deformation energy f(W ).

Our main contribution is a method for online data aug-
mentation during the training of a variational autoencoder
(VAE) [26]. Namely, during training, our method explores
the current sample space, guided by the deformation en-
ergy f(W ), to discover additional meaningful deformation
samples. These are progressively used as additional sample
points to form an augmented dataset that is used to retrain
the VAE, and the process is iterated until convergence.

3.2. Deformation-Aware VAE

Let E : RN×3 → RK be the encoder in the standard
VAE architecture, mapping a deformation W into vectors
of mean µ and variance Σ into a distribution E(W ) ∼
N (µ,Σ). These vectors define the mean and variance of
a multivariate Gaussian distribution from which the latent
code z, of dimension K, is sampled, i.e., z ∼ N (µ,Σ).
Similarly, let D : RK → RN×3 be the decoder mapping the
latent code to a deformation, D(z) = W . We shall slightly
abuse notation and use D(E(W )) to denote the full autoen-
coding process of W , including the step of sampling from
the Gaussian. We define three losses to be used in training.

(i) Reconstruction Loss: We require that the VAE re-
duces to an identity map for any sample deformation,

LReconstruction := ∥D(E(W ))−W∥2. (1)

(ii) Gaussian Regularizer Loss: Instead of the standard
the KL divergence regularizer used in VAEs, we constrain
the sample mean and covariance of the mini-batch to that of
a unit Gaussian, as proposed in [14]. We found that for a



Algorithm 1 Pseudocode for searching the latent space,
starting from deformation W , for a new augmenting shape.

1: procedure LATENTAUGMENT(W ,E,D,f ,R)
▷ E = Encoder, D= Decoder
▷ W = Initial deformation, f = Energy
▷ R = All previously input or generated shapes

2: l = E(W ) ▷ latent code
3: H ≈ ∇l∇lf(D(l)) ▷ approximate Hessian
4: λ,U↑(H) = EigenDecomposition(H)

5: λk, U
↑
k (H)← λ,U↑(H) ▷ retain k components

6: Wd = ∅
7: for j ∈ [1,s]: do
8: β ∼ N (0, I) ∈ Rk ▷ sample β, k ≪ K

9: β̂ = β/
∑k

i=1 β
2
i

10: α =
√
2δ/

∑i=k
i=1 β̂

2
i λi

11: Ŵj = D(l + α
∑k

i=1 β̂iU
↑
i (H))

12: Wd ←Wd ∪ Ŵj ▷ add to candidates
13: end for
14: W ∗ = MMR(W,R,Wd) ▷ prune candidates
15: WProjected = argmin f(W ∗) ▷ project
16: R← R ∪ {WProjected} ▷ augment training set
17: end procedure

small sample size this batch-based loss leads to faster con-
vergence, compared to the standard KL-Divergence. We
denote this loss as,

LGaussian :=
1

b

b∑
i=1

(
∥µi∥2 + ∥Σi − I∥2

)
, (2)

where b is the mini-batch size, µi,Σi are the predicted mean
and covariance for the i-th sample in the mini-batch, and I
is the identity matrix.

(iii) Deformation Energy: Lastly, we require the result-
ing deformation to have low deformation energy,

LDeformation := f(D(E(W ))). (3)
In summary, our network training loss is

L := LReconstruction + LGaussian + σLDeformation (4)
where σ is a scalar weight applied to the energy function.

3.3. Augmenting via Latent Space Exploration

We now describe the main step of our technique – adding
additional deformation examples W j to the latent space to

Figure 3. tSNE embedding of generated samples shows progres-
sive augmentation of the shape space. Sample color indicates orig-
inating (parent) shape. See also Fig. 1.

reinforce training (Algorithm 1). Simply optimizing (4) is
not enough to cover the deformation space. Instead, we con-
tinuously introduce new low-energy deformations into the
training set, by which we make the data term aware of the
deformation energy. We achieve this through three steps:
(i) deformation-aware perturbation of the latent code in di-
rections that locally least modify the deformation energy;
(ii) data-driven pruning of perturbed codes that do not intro-
duce variance to the current dataset; and (iii) deformation-
aware projection of the new codes to further lower their de-
formation energy, with an optional high-resolution projec-
tion to transfer the deformation from a low-resolution mesh
to a higher resolution one. Figure 3 illustrates how the la-
tent space is progressively populated with new deformations
over iterations, where colors indicate the base shapes.

(i) Deformation-aware perturbation in latent space.
Our goal is to create variations of a given code in latent
space without modifying its deformation energy signifi-
cantly: let W be a deformation, and l = E(W ) ∈ RK

a latent code achieved from encoding it. We aim to find
the low-energy perturbation modes of l. In short, we aim
to perturb the deformation while not changing the defor-
mation energy too much, or in other words – we wish to
stay on the current level set of the energy. To achieve that,
we can restrict ourselves to perturbations on the local tan-
gent space of the energy’s level set. This tangent space sim-
ply comprises of all directions orthogonal to the gradient
∇lf(D(l)).
In the tangent space, we can pick better directions using a
second order analysis. Let H denote the Hessian of the de-
formation energy with respect to the latent code,

H := ∇l∇lf(D(l)). (5)

Let λi, and U↑
i (H) respectively denote the eigenvalues and

eigenvectors of H , in ascending order of eigenvalues. Since
smaller eigenvalues correspond to directions of less change
in energy, we retain only the k (k << K) smallest λi and
U↑
i (H). We then draw a random perturbation, by sampling

a random vector β ∈ Rk from a normal distribution. Each
βi ∈ β corresponds to step along the eigenvector U↑

i (H).
We normalize β to β̂ such that

∑k
i=1 β̂iU

↑
i (H) is a unit

vector, i.e.,
∑k

i=1 β̂
2
i = 1. We then take a step,

lt := l + α

k∑
i=1

β̂iU
↑
i (H), (6)

where α denotes the step-size and lt is in the tangent plane.
We repeat this process s times for each latent code l to get s
perturbed codes l̃1, l̃2, . . . l̃s. Let {W̃ 1, W̃ 2 . . . W̃ s} denote
the decoded perturbed deformations where W̃ j = D(l̃j).

Variable step size: Different regions of the latent space
have different local deformation landscapes, e.g., curvatures
along different directions on the tangent plane. Hence, we



should adapt α to the nature of the local landscape around
l. To that end, we formulate the step size α in terms of
the eigenvalues λi and a user-prescribed threshold δ on the
allowed deformation energy f (i.e., f() ≤ δ). Assuming
C2 continuity for deformation energy f(), we can obtain
the following bound on the step size (see supplemental),

α ≤
√

2δ∑k
i=1 β̂

2
i λi

.

This gives an upper bound on the step size along any defor-
mation direction.

(ii) Data-driven pruning of the perturbed deformations.
In order to add diverse samples, given the set of candidate
deformations {W̃ j}, we select one example to be added to
the dataset, via Maximal Marginal Relevance (MMR) rank-
ing [9]. Specifically, MMR gives a higher score to pertur-
bations that are similar to the unperturbed W , but different
from the existing deformations set R, containing the land-
marks and deformations generated so far. We compute as,

F (w) = γM(w,W )− (1− γ)max
r∈R

M(w, r), (7)

where M(x, y) is the cosine similarity between x and y.
Thus, we choose the deformation W ∗ ∈Wd that maximizes
the MMR function with its latent code denoted l∗.

(iii) Deformation-aware projection to smooth, low-
energy deformations. Although the deformation-aware
perturbation somewhat avoids high-energy states, the per-
turbed deformation W ∗ may still exhibit undesirable arti-
facts such as lack of smoothness or high deformation en-
ergy. Hence, we project the code to have lower deformation
energy with respect to the unperturbed W . We achieve this
by treating W as the rest pose, defining a deformation en-
ergy with respect to it, fW . We perform a fixed number
of gradient descent steps starting from W ∗ to lower the en-
ergy, which yields the final deformation WProjected. In our
experiments, we optimize up to the threshold of 10−5.

(iv) Augment and iterate: Finally, we append the newly
generated deformations to the current (training) set, and
continue training. We repeat this augmentation and retrain-
ing several times, until we reach a target training set size.

Implementation Choices

Choice of energy f . For training the VAE, we set f as the
L2 formulation of the ARAPReg energy [20]. ARAPReg is
an efficient approximation of the ARAP energy [36] that is
conducive for network training. This energy computes an
approximate Hessian H of ARAP with respect to the latent
space, and directly minimizes the eigenvalues of H .

Figure 4. Generation results evaluated by coverage. We train
different methods on the same training data (col 1) and generate
comparable numbers of shapes. Given two shapes from the hold-
out data (col 2), we evaluate the methods by finding the closest
generated shape (cols 3-9). Note how the baselines exhibit strong
artifacts and usually do not match the query shape.

Figure 5. Training GLASS on the human, centaur, and horse
meshes using the 3 examples each (top). (Bottom) We show ran-
dom samples from the latent space, which combine different prop-
erties learned from the example deformations.

Approximation of Hessian. Similarly, for step (i) in Sec-
tion 3.3, we use the approximate Hessian H ≈ JTHJ pro-
posed in [20] in our Equations 5 and 6, where H is the exact
Hessian of ARAP and J is the stochastic Jacobian of the
ARAP with respect to the RK latent space.
The above choices speed up training and yield better results
than classical ARAP. We still use ARAP for step (iii) where
Hessian approximation is not needed.
Upper bound for α. The eigenvalues allow us to choose an
appropriate local step-size, but they only yield a local ap-
proximation of the deformation energy. As our method con-
tinues adding low-energy shapes, the eigenvalues become
lower, leading to an extremely large step size α. Thus, we
set an upper bound of 2 on α.
High-resolution projection. To speed up training and
avoid deformations that are too high-frequency, we use low-
resolution meshes (low vertex count). We decimate the
high-resolution meshes by preserving a subset of the ver-
tices, thus retaining correspondence from low to high. The
generated low-res deformations can later be projected back
to original high-res meshes by treating the chosen subset of
vertices as deformation constraints in the ARAP optimiza-
tion proposed in [36].



4. Experiments

We evaluate GLASS on public data of humans
(FAUST [5]) and creatures (TOSCA [8]) in different poses.
In our experiments, we sample X landmark poses of a
model from a dataset and train our method. We evaluate
quality and diversity of newly generated poses as well as
interpolation sequences between landmark poses. We de-
note our experiments as “SubjectName-X” to indicate the
type of the subject and the number of landmark poses pro-
vided as an input to our method; most results use between 3
and 10 landmarks.

Evaluation metrics. We use three metrics - Coverage,
Mesh smoothness and Interpolaiton smoothness - to eval-
uate our performance. For each metric, lower values are
better. The metrics are detailed in the supplemental.

Method Comparison While existing methods are not de-
signed to learn generative latent spaces from sparse data,
we adapt them as baselines. Since ARAP projection to high
resolution is specific to our method (see 3.3), we compare
methods using the low-res version that we train with.

(i) Vanilla VAE: We train a VAE using only the sparse
set of shapes, with no data augmentation. (ii) +Interpola-
tion: We generate new shapes by interpolating between all
pairs of available landmarks by simply averaging coordi-
nates of corresponding vertices. We interpolate such that
the amount of augmented data is equivalent to what is gen-
erated with GLASS (2500 shapes). Then we train a VAE
with these poses. (iii) +Interp. +Energy: This is an ex-
tension of the previous method. Since raw interpolation
can deviate from the underlying shape space, in addition
to interpolation, we perform projection by minimizing the
sum of ARAP energies with respect to both shapes in the
pair. (iv) LIMP-ARAP [12]: This method is motivated by
the training strategy proposed in LIMP [12]. They train a
VAE with pairs of shapes in every iteration - for each pair,
they pick a random latent code on the line between the two,
decode it to a new shape, and minimize its energy. Since
we only want to compare augmentation strategies we adapt

Figure 6. We compare the interpolation results between our
method, several ablations of our method, and prior work.

Figure 7. Interpolation results. In gray, we show two landmark
shapes. In gold, we show the decoded meshes after we linearly in-
terpolate the latent space between these two landmarks. All mod-
els are trained on only 5 landmarks.

Figure 8. In gray, are 2 subsets of 3 and 6 facial expressions from
the COMA dataset. Training GLASS on each of them, correspond-
ingly generates the novel expressions in gold.

LIMP to use ARAP energy. (v) + ARAP Shape Interpola-
tion [1]: This method morphs a shape from a source pose to
a target pose. The morph is rigid in the sense that local vol-
umes are least-distorting as they vary from their source to
target configurations. (vi) Deep-MCMC [33]: This method
explores parameter variations via a latent space and gener-
ate samples by performing HMC steps in the latent space
and decoding the generated codes.

Generation Experiments After training, we sample la-
tent codes from a Unit Gaussian in RK , and decode with
our decoder to generate samples (see Figures 1, 5 and 8).
Our generated poses look substantially different from the
training data and combine features from multiple input ex-
amples.



Table 1. Surface smoothness and coverage with respect to excluded set, of generated samples. Lower is better.

Data Vanilla VAE +Interpolation +Interp. +Energy LIMP Deep-MCMC +ARAP SI [1] GLASS

Faust-3 1.0 / 1.0 0.73 / 0.96 0.75 / 0.89 1.06 / 1.01 1.04 / 0.95 0.77 / 1.09 0.63 / 0.77
Faust-5 1.0 / 1.0 0.65 / 1.04 0.62 / 0.88 1.0 / 0.96 1.06 / 0.94 0.62 / 0.97 0.59 / 0.78
Faust-7 1.0 / 1.0 1.00 / 1.51 0.57 / 1.61 1.07 / 0.93 1.01 / 0.96 0.85 / 1.84 0.54 / 0.81

Centaurs-3 1.0 / 1.0 0.83 / 0.96 0.85 / 0.94 1.03 / 0.97 1.04 / 0.98 0.85 / 0.99 0.69 / 0.84
Centaurs-4 1.0 / 1.0 0.81 / 0.97 0.84 / 0.95 1.01 / 0.99 1.08 / 0.96 0.81 / 1.0 0.69 / 0.84

Horses-3 1.0 / 1.0 0.66 / 0.95 0.73 / 0.91 1.06 / 1.03 1.02 / 1.05 0.65 / 0.94 0.61 / 0.89
Horses-4 1.0 / 1.0 0.65 / 0.94 0.68 / 0.95 1.03 / 0.98 1.04 / 1.04 0.62 / 1.0 0.60 / 0.80

Table 2. L2 Error wrt excluded DFaust frames and reconstruction error of those excluded frames. Lower is better.

Data Vanilla VAE +Interpolation +Interp. +Energy LIMP +ARAP SI [1] GLASS

DFaust-1 1.0 / 1.0 0.48 / 0.51 0.48 / 0.40 0.53 / 0.56 0.94 / 0.92 0.45 / 0.40
DFaust-2 1.0 / 1.0 0.56 / 0.48 0.51 / 0.42 1.06 / 1.07 0.84 / 0.81 0.47 / 0.40
DFaust-3 1.0 / 1.0 0.61 / 0.57 0.51 / 0.44 1.08 / 2.0 0.77 / 0.8 0.45 / 0.41
DFaust-4 1.0 / 1.0 0.59 / 0.35 0.57 / 0.5 0.84 / 1.73 0.87 / 1.14 0.46 / 0.32
DFaust-5 1.0 / 1.0 0.27 / 0.38 0.3 / 0.27 0.53 / 1.28 0.67 / 1.2 0.22 / 0.24

We compare our approach to all the baselines. We sam-
ple from the unit Gaussian for all VAE-based techniques,
where the only exception is Deep-MCMC where we use
latent-space HMC as proposed in their work. We show
qualitative results in Figure 4 and quantitative evaluations in
Table 1. Each cell reports smoothness and coverage errors,
normalized based on the corresponding errors for Vanilla-
VAE. Note that our method outperforms all baselines in its
ability to generate novel and plausible poses (i.e., the poses
from the hold-out set of the true poses).

Interpolation Experiments We compare our method and
the first five baselines by evaluating the quality of interpo-
lations produced between all pairs of landmark shapes (we
omit Deep-MCMC since it is not suitable for interpolation).
We show our results in Figure 7 and comparisons in Fig-
ure 6 with corresponding stats in Table 3. Each cell reports
smoothness, ARAP score, and interpolation quality, and to
make results more readable we normalize the scores using
the corresponding value for Vanilla VAE.

Ours performs the best with respect to ARAP score and
also yields consistently smoother shapes with fewer arti-
facts, both in terms of individual surfaces, as well as discon-
tinuities in interpolation sequences. ARAP Shape Interpola-
tion is performing consistently worse than all baselines ex-
cept Vanilla-VAE. Interpolation-based baselines sometimes
yield smoother interpolations, something we would expect
to be true for simpler, linear motions. However, as seen in
Figure 6, an outlier global rotation can disturb the otherwise
smooth interpolation, which does not happen with GLASS.
Additionally, we demonstrate that they are limited in their
ability to synthesize novel plausible poses.

Dynamic Faust Interpolation Dynamic Faust [6]
(DFaust) provides meshed data of captured motion se-
quences, from which we selected 5 sequences with the
most variance in vertex positions. Each sequence contains
100-200 shapes from which we select ≈ 5 keypoints and
train GLASS and the baselines on these. We then evaluate
interpolation by measuring the L2 distance between the
generated interpolations and the ground-truth frames in the
sequence that were excluded from training. Additionally,
we measure the reconstruction error of the excluded
frames. The results are compared in Table 2. Our method
significantly outperforms the baselines.

Using GLASS for Learning Correspondences We now
evaluate our data augmentation technique on the practical
task of learning 3D correspondences between shapes. We
pick a state-of-the-art correspondence learning method, 3D-
CODED [18], as a reference. Originally, this method was
trained on 230k deformations, most of them sampled from
the SMPL model [30] and 30k synthetic augmentations. We
evaluate how well this method could perform with a smaller
training set, with and without the proposed augmentation.

We train 3D-CODED using 280 sampled shapes from
SMPL [30] that are augmented with a number of additional
deformations generated from our model (see Table 5). Ours
consistently provides a significant improvement over train-
ing 3D-CODED with the original landmarks. For reference,
the correspondence error of 3D-CODED trained on the full
230k pose dataset is 1.98cm.

Ablation study In this section we evaluate the contribu-
tion of various steps in GLASS to our interpolation met-
rics. We evaluate on the Faust-10, Centaurs-6 and Horses-8



Table 3. Surface smoothness, ARAP energy, and standard deviation of inter-frame spacing between landmarks by interpolation across
different datasets. All results are normalized such that Vanilla VAE is 1.0, and lower numbers are better.

Data Vanilla VAE +Interpolation +Interp. +Energy LIMP +ARAP SI GLASS

Faust-3 1.0 / 1.0 / 1.0 0.47 / 0.22 / 0.43 0.44 / 0.24 / 0.29 0.45 / 0.32 / 0.7 0.95 / 1.49 / 0.91 0.42/0.20 / 0.21
Faust-5 1.0 / 1.0 / 1.0 0.53 / 0.25 / 0.49 0.53 / 0.25 / 0.41 0.52 / 0.27 / 0.5 0.99 / 1.13 / 0.87 0.51 / 0.23 / 0.38
Faust-7 1.0 / 1.0 / 1.0 0.64 / 0.31 / 0.49 0.57 / 0.26 / 0.62 0.62 / 0.32 / 0.72 0.84 / 0.57 / 0.86 0.57 / 0.3 / 0.23

Faust-10 1.0 / 1.0 / 1.0 0.71 / 0.37 / 0.3 0.67 / 0.43 / 0.27 0.66 / 0.36 / 1.52 0.78 / 0.48 / 0.55 0.55 / 0.27 / 0.54
Centaurs-3 1.0 / 1.0 / 1.0 0.53 / 0.31 / 0.22 0.51 / 0.31 / 0.48 0.52 / 0.34 / 0.24 0.89 / 1.28 / 2.12 0.5 / 0.28 / 0.18
Centaurs-4 1.0 / 1.0 / 1.0 0.53 / 0.24 / 0.27 0.52 / 0.26 / 0.17 0.51 / 0.25 / 0.48 0.88 / 0.88 / 0.8 0.49 / 0.25 / 0.1
Centaurs-6 1.0 / 1.0 / 1.0 0.59 / 0.26 / 0.33 0.65 / 0.38 / 0.5 0.6 / 0.27 / 0.47 0.98 / 1.02 / 0.44 0.58 / 0.22 / 0.43

Horses-3 1.0 / 1.0 / 1.0 0.44 / 0.39 / 0.33 0.46 / 0.33 / 0.28 0.44 / 0.4 / 0.43 0.9 / 1.41 / 1.28 0.42 / 0.24 / 0.43
Horses-4 1.0 / 1.0 / 1.0 0.48 / 0.29 / 0.28 0.47 / 0.3 / 0.45 0.45 / 0.36 / 0.85 0.94 / 1.25 / 1.42 0.48 / 0.22 / 0.44
Horses-8 1.0 / 1.0 / 1.0 0.55 / 0.31 / 0.55 0.56 / 0.38 / 0.7 0.53 / 0.43 / 1.29 0.83 / 0.76 / 0.74 0.53 / 0.25 / 0.28

Table 4. Ablation study results.

Data 1: Vanilla VAE 2: (1)+Ldeform 3: (1) + perturb 4: (2) + perturb 5: (3)+project 6: (4)+project
Faust-10 1.0 / 1.0 / 1.0 0.63 / 0.39 / 0.6 0.61 / 0.35 / 0.6 0.59 / 0.32 / 0.59 0.56 / 0.32 / 0.57 0.55 / 0.27 / 0.54

Centaurs-6 1.0 / 1.0 / 1.0 0.69 / 0.34 / 0.54 0.62 / 0.31 / 0.47 0.59 / 0.29 / 0.47 0.59 / 0.27 / 0.46 0.58 / 0.22 / 0.43
Horses-8 1.0 / 1.0 / 1.0 0.66 / 0.37 / 0.43 0.59 / 0.37 / 0.33 0.56 / 0.29 / 0.32 0.54 / 0.27 / 0.29 0.53 / 0.25 / 0.28

Table 5. Correspondence error on the Faust INTRA benchmark,
by GLASS-augmenting 3D-CODED with deformations sampled
from our method.

Data +GLASS augmentation Error (cm)
Faust-3 0 26.90
Faust-3 3,065 13.18
Faust-7 0 22.10
Faust-7 3,573 11.78

SMPL-280 0 14.59
SMPL-280 40,000 6.85

datasets. Since these samples are all that is available we
do not have a hold-out set, so we do not measure cover-
age. Starting with Vanilla-VAE (that only uses LReconstruction
and LGaussian), we first add the deformation energy loss
(LDeformation), which is ARAPReg [20]. Table 4(1,2) shows
this improves all metrics.

Next, we consider our perturbation strategy (Sec-
tion 3.3 i, ii) and add it to both vanilla and energy-guided
VAE (Table 4.3, 4.4). We observe that LDeformation performs
better because it makes the latent-space conducive for sam-
pling low energy shapes. Having LDeformation helps our per-
turbation strategy find low energy shapes that are suitable
for our projection step. Due to this, we discover shapes with
energy as low as 0.001, while without it, the discovered
shapes can have energy > 0.1. This difference helps the
subsequent projection step converge faster to our required
threshold of 10−5.

Finally, we look at the projection step (Section 3.3 iii).
We add it to both baseline techniques that have perturba-
tion, and report results in Table 4.5, 4.6, where column (6)
corresponds to our final method. Adding the projection step

improves the smoothness and ARAP scores. After projec-
tion, our shapes have very low ARAP, in the order of 10−5.
Since these are added back to the training set, we observe
that perturbation steps in future iterations find lower energy
shapes. This further improves convergence of the projection
step in future iterations. Overall LDeformation helps both the
perturbation and projection steps converge faster to low en-
ergy shapes, and since projected shapes are encoded again
by training, both perturbation and projection steps require
fewer iterations.

5. Conclusion
GLASS is shown to be an effective generative technique

for 3D shape deformations, relying solely on a handful of
examples and a given deformation energy. The main limita-
tion of our method is its reliance on a given mesh with ver-
tex correspondences, preventing its use on examples with
different triangulations, and we set the goal of generalizing
it to arbitrary geometries as important future work.

We believe our proposed technique opens many future
directions. There are many other deformation energies that
could be explored; e.g., densely sampling conformal (or
quasi-conformal) deformations from a given sparse set can
be an extremely interesting followup. More broadly, replac-
ing the deformation energy with learned energies, such as
the output of an image-discriminator, may enable generat-
ing plausible images, given a very sparse set of examples.
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