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Figure 1. DA Wand enables interactive decaling through a conditional selection of local distortion-aware patches. Our method identifies
large patches within both developable and high-curvature regions which induce a low distortion parameterization.

Abstract

We present a neural technique for learning to select a
local sub-region around a point which can be used for
mesh parameterization. The motivation for our framework
is driven by interactive workflows used for decaling, tex-
turing, or painting on surfaces. Our key idea is to incor-
porate segmentation probabilities as weights of a classi-
cal parameterization method, implemented as a novel dif-
ferentiable parameterization layer within a neural network
framework. We train a segmentation network to select 3D
regions that are parameterized into 2D and penalized by the
resulting distortion, giving rise to segmentations which are
distortion-aware. Following training, a user can use our
system to interactively select a point on the mesh and ob-
tain a large, meaningful region around the selection which
induces a low-distortion parameterization. Our code1 and
project2 are publicly available.

1. Introduction
Many interactive workflows for decaling, texturing, or

painting on a 3D mesh require extracting a large surface
patch around a point that can be mapped to the 2D plane
with low distortion. Unlike global parameterization ap-
proaches that map the entire mesh to 2D while introducing
as few cuts as possible [1, 7–9, 17, 35, 38, 41, 43, 44, 53, 54,
56]), this work focuses on segmenting a local sub-region
around a point of interest on a mesh for parameterization
[25,36,45,46,60,69,70,73]. Local parameterizations are ad-
vantageous in certain modeling settings because they are in-

1https://github.com/threedle/DA-Wand
2https://threedle.github.io/DA-Wand/

herently user-interactive, can achieve lower distortion than
their global counterparts, and are computationally more ef-
ficient. To date, however, techniques for extracting a sur-
face patch that is amenable to local parameterization have
largely relied on heuristics balancing various compactness,
patch size, and developability priors [18].

This work instead takes a data-driven approach to learn
distortion-aware local segmentations that are optimal for
local parameterization. Our proposed framework uses
a novel differentiable parameterization layer to predict
a patch around a point and its corresponding UV map.
This enables self-supervised training, in which our network
is encouraged to predict area-maximizing and distortion-
minimizing patches through a series of carefully con-
structed priors, allowing us to sidestep the scarcity of
parameterization-labeled datasets.

We name our system the Distortion-Aware Wand (DA
Wand), which given an input mesh and initial triangle se-
lection, outputs soft segmentation probabilities. We incor-
porate these probabilities into our parameterization layer by
devising a weighted version of a classical parameterization
method - LSCM [35] - which we call wLSCM. This adap-
tation gives rise to a probability-guided parameterization,
over which a distortion energy can be computed to enable
self-supervised training. We prove a theorem stating that the
wLSCM UV map converges to the LSCM UV map as the
soft probabilities converge to a binary segmentation mask,
which establishes the direct relation between probabilities
and binary segmentation in the parameterization context.

Reducing the distortion of the UV map and maximiz-
ing the segmentation area are competing objectives, as UV
distortion scales monotonically with patch size. Naively
summing these objectives leads to poor optimization with



undesirable local minima. We harmonize these objectives
by devising a novel thresholded-distortion loss, which pe-
nalizes triangles with distortion above some user-prescribed
threshold. We additionally encourage compactness through
a smoothness loss inspired by the graphcuts algorithm [26].

We design a novel near-developable segmentation
dataset to initialize the weights of our segmentation net-
work, with an automatic generation algorithm which can be
run out of the box. We then train this network end-to-end
on a dataset of unlabelled natural shapes using our parame-
terization layer with distortion and compactness priors.

We leverage a MeshCNN [15] backbone to learn directly
on the input triangulation which enables sensitivity to sharp
features and a large receptive field which enables patch
growth. Moreover, by utilizing intrinsic mesh features as in-
put, our system remains invariant to rigid-transformations.

DA Wand allows a user to interactively select a triangle
on the mesh and obtain a large, meaningful region around
the selection which can be UV parameterized with low dis-
tortion. We show that the neural network is able to leverage
global information to extend the segmentation with mini-
mal distortion gain, in contrast to existing heuristic meth-
ods which stop at the boundaries of high curvature re-
gions. Our method can produce user-conditioned segmenta-
tions at interactive rates, beating out alternative techniques.
We demonstrate a compelling interactive application of DA
Wand in Fig. 1, in which different regions on the sorting hat
mesh are iteratively selected and decaled. We show addi-
tional example textures in the supplemental.

2. Related Work

2.1. Global Cutting & Parameterization

Surface parameterization has been a long-standing ge-
ometry processing problem. An extensive line of work has
dealt with global surface parameterization, in which a 3-
dimensional surface, discretized as a triangle mesh with
fixed connectivity, is mapped to the plane [1,7–9,17,35,38,
41,43,44,53,54,56]). Most of these methods assume a disk
topology surface, and some generate seams on a heuristic
basis to ensure this. A few seamless approaches exist that
instead introduce point singularities. [11, 22, 30, 39, 58].

Though most parameterization works assume a disk
topology input, the target domain for many texturing and
fabrication applications is often a closed mesh without
boundaries, and segmenting a mesh into topological disks
in an optimal way is a non-trivial problem. Thus, many
works have focused on the sub-problem of cutting a closed
surface into disks with desirable properties for the target
application – typically developability and minimal-length
seams [13, 18, 34, 35, 37, 48, 50, 52, 63, 71]. Some works
jointly optimize for the parameterization and cutting objec-
tives [31,40], taking advantage of the close relationship be-

Logarithmic Map
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Figure 2. Segmentations from our baseline results conditioned on
the same selections (stars) as our method in Fig. 1, with resulting
UV textures. To produce the Logarithmic Map segmentation, we
select a low-distortion patch from the full map (dashed inset).

tween seam placement and parameterization distortion.

2.2. Local Cutting & Parameterization

A few past works have examined the local problem of
segmenting and parameterizing a surface patch which en-
compasses a point of interest. Exponential Maps (more ac-
curately referred by its inverse logarithmic map, which is
how we will refer to this method moving forward) is a cor-
nerstone work in this domain [46], and subsequent local pa-
rameterization works have primarily extended the insights
of the original method [36, 45, 60, 61, 69, 70, 73]. All of the
local parameterization works to date either do not rely on a
local segmentation of the domain, grow out a fixed-radius
geodesic circle, or apply some form of local shape analysis
to iteratively floodfill the selection. This last class of chart
growing techniques based on surface analysis is also per-
formed by some global mesh decomposition methods, such
as DCharts [18], which makes these methods amenable for
adaptation to the local segmentation setting.

Our work is primarily interested in this local segmen-
tation for parameterization problem. To our knowledge,
however, our work is the first to (1) make explicit the objec-
tive of a minimal-distortion, large local segmentation and
(2) apply data-driven techniques to solve this problem. Our
approach overcomes the limitations of the aforementioned
heuristic methods, which preclude their use in certain tex-
turing applications, shown in Fig. 2.

2.3. Mesh Segmentation

Our work also has a foot in the space of general mesh
segmentation techniques, in which a mesh is partitioned into
disjoint parts according to some set of criteria. One promi-
nent class of segmentation techniques involves semantic
segmentation, where a mesh is decomposed into meaning-



Figure 3. Overview. The encoder ϕE maps a mesh and a selection triangle to edge features which are passed into ϕC to output a
local segmentation. The training is split into two phases. We have a pretrain phase where we jointly train our encoder and classifier
network on a synthetic dataset of shapes with ground truth segmentations and randomly sampled initial selections. We supervise with
cross entropy loss LC . In our main distortion self-supervision phase, we finetune ϕE and ϕC on a dataset of natural shapes, where no
ground truth segmentations exist. We introduce a differentiable parameterization layer ϕP which computes a weighted UV embedding for
the network-predicted segmentation on the fly during training. The UV map is sent into a distortion function of choice D, which is used in
the thresholded-distortion loss Lthreshold. The smoothness loss Lsmooth enforces a compactness prior on the network prediction, which helps
curtail non-contiguous segmentations.

ful parts [3,5,12,14,21,27–29,55,62,65,66,68,72,74,75].
Another prominent class tackles the disk topology ob-
jective discussed in the previous section [13, 18, 35, 52],
[34,37,48,50,63,71]. A closely related set of methods per-
form sharp feature identification, where the surface geome-
try is analyzed to identify boundaries of minimal principal
curvature, and the mesh is segmented along these bound-
aries [2,4,10,19,20,23,24,32,64,72,77]. Recently, learning-
based methods have been introduced for each of these ob-
jectives [14–16, 21, 27, 47, 66, 67], but to our knowledge
there does not exist a learning-based work that targets our
objective of local distortion-aware segmentation.

3. Method
We assume as input a triangle mesh M with faces F and

vertices V, and a selected triangle t∗. Our goal is to define
a binary segmentation of the mesh faces F̄ which contains
t∗. Additionally, F̄ needs to satisfy three competing objec-
tives: i) enclose a region that can be UV-mapped with low
distortion; ii) cover an as-large-as-possible mesh area; iii)
have a compact boundary, which we define as a boundary
enclosing a single connected region on the mesh surface.
We denote by U ∈ R|V|×2 the computed UV mapping as-
signing a 2D coordinate to each vertex.

Our framework predicts a soft segmentation, in which
each triangle is assigned a probability designating whether
it belongs to the segmented region. The key contribution
that drives our framework is a differentiable parameteriza-
tion layer (Sec 3.1), which computes a UV parameterization
conditioned on the segmentation probabilities. To train this
architecture we introduce novel distortion and compactness
objectives favoring large contiguous segments with low-
distortion UV parameterizations (Sec 3.2).

Training is conducted in two stages: i) in pre-training,
we leverage a novel synthetic dataset (Sec 3.3), with a
ground truth decomposition into near-developable regions,
and train our segmentation network with strong supervi-

sion. ii) we then train the entire system end-to-end with
distortion self-supervision (enabled by the parameterization
layer) on a dataset of unlabelled natural shapes (Sec 3.4).
An overview of the system is shown in Fig. 3.

3.1. Probability-Guided Parameterization

Our goal with the parameterization layer is to devise a
fast, differentiable mapping from the segmentation W to a
low-distortion UV map. To predict the segmentation, we
leverage MeshCNN, a robust mesh segmentation architec-
ture [15]. The network predicts a soft segmentation W
which assigns a weight wt to each triangle t. This soft seg-
mentation can be clamped to a binary segmentation (e.g.
through rounding) to define a subregion F̄ of the mesh. The
challenge is then, how to devise a parameterization that ac-
counts for the soft segmentation and smoothly approximates
the parameterization of the subregion F̄?

Our main observation is that we can consider a classic
parameterization technique - Least Square Conformal Maps
(LSCM) [35] - and define a weighted version of it, dubbed
wLSCM, such that as the weights approach binary values
{0, 1} which define a hard segmentation F̄, wLSCM con-
verges to the (non-weighted) LSCM parameterization of F̄.
We achieve this such that wLSCM can still be implemented
as a straightforward differentiable layer.

The original LSCM method considers the vertices of
each triangle (v1, v2, v3), and their image under the (un-
known) UV map, (u1, u2, u3), and considers the affine
transformation representing that map, which satisfies

Atvi + δt = ui, i ∈ {1, 2, 3} , (1)

where At ∈ R2×2, δt ∈ R2 are the linear and translational
components of the map, respectively (see [35]).

LSCM then aims to minimize conformal error, which
measures the change of the triangle angles resulting from
the map. It considers the closest similarity matrix S(At)



(a matrix with no conformal error), and measures the least-
squares error between At and the similarity matrix:

ELSCM =
∑
t∈F

||At − S(At)||2. (2)

LSCM computes the UV parameterization U which mini-
mizes this energy, which reduces to solving a sparse linear
system. We propose relaxing the segmentation problem by
adding a weighting term using the weights W predicted by
the segmentation network:

EwLSCM =
∑
t∈F

wt||At − S(At)||2. (3)

The minimizer of this energy can still be obtained via a lin-
ear solve. Hence, our differentiable parameterization layer
consists of plugging the predicted soft segmentation W into
the wLSCM energy (Eq. (3)), and solving the linear sys-
tem to get the UV parameterization U. Fig. 4 illustrates
how weights affect the parameterization. Importantly, as
the weights converge to a binary segmentation, the result-
ing wLSCM UV parameterization converges to the LSCM
parameterization of the segmented region:

Theorem 1 Let F̄ ⊂ F be a subset of triangles of the mesh,
which comprises one connected component. Let W be non-
negative weights assigned to the triangles s.t. the weights
of F̄ are non-zero. Let UW be the minimizer of Eq. (3) w.r.t
W . Then UW , restricted to F̄, is a well-defined, continuous
function of W . Furthermore, if the non-zero weights of W
are all equal to 1, then UW restricted to F̄ is exactly equal
to the (non-weighted) LSCM parameterization of F̄.

The theorem has a straightforward proof via continuity of
polynomial roots. See the appendix for the full proof.

Segmentation network architecture. For the soft
segmentation prediction, we adapt a 12-layer (6 down, 6
up) MeshCNN [15] to define an edge encoder, ϕE . Each
layer has 3 residual convolution blocks with hidden dimen-
sion 16. This fully-convolutional backbone enables a large
receptive field with relatively few parameters, while the
graph-based convolutions allow for the fine-grained edge
understanding necessary to segment along noisy geometric
features. We do not incorporate pooling in the lower layers,
as we find it oversmooths the learned features. ϕE takes as
input batched pairs of meshes and point selections (M,x),
and computes dihedral angles, the heat kernel signature
(HKS) [59], and a one-hot vector of selection triangle
incidence as edge features.

A second per-triangle classifier ϕC predicts the per-
triangle weights W . It is implemented as a 3-layer multi-
layer perceptron (MLP) with dropout and a final sigmoid
activation layer to map scalars to soft probabilities.

W = 1 W = 0.3 W = 0.2 W = 0
Figure 4. We show the wLSCM UV map for a mesh made from 3
sides of a cube, with decreasing weights W for the region outlined
in red. The wLSCM UV map of the non-outlined region when
W=0 is exactly the UV map of unweighted LSCM over the same
region, as proved in Theorem 1.

3.2. Distortion and Compactness Priors

To train the network, we carefully design losses which
balance across our three competing patch objectives of size,
distortion, and compactness.

Thresholded-distortion loss. We aim to produce a
UV parameterization with low isometric distortion, defined
via the As-Rigid-As-Possible (ARAP) energy (Darap) [33].

Darap(xt) =

2∑
i=0

cot(θit)||(xi
t − xi+1

t )− Lt(v
i
t − vi+1

t )||2

(4)
where vit is the i-th vertex of triangle t in local coordinates,
θit is the angle opposite the edge (xi

t, x
i+1
t ), and Lt is the

“best-fit” rotation matrix as described in [33].
Typically the distortion of a UV parameterization grows

monotonically with the size of the selection area. This puts
in direct contrast our objectives of large patch area and low-
distortion parameterization. We resolve this by formulat-
ing an objective that aims to maximize the the number of
triangles with distortion under a threshold. We write this
objective in terms of a novel thresholded-distortion loss:

Lthreshold(D) =
∑
t

At∑
At

(
1− e−(Dt/γ)

α
)
, (5)

where At is the area of triangle t, γ acts as a soft threshold
on the per-triangle distortion Dt, and α is a hyperparameter
which controls the sensitivity to the threshold. This loss
acts as a weighted count of triangles with distortion below
γ. In all our experiments, we set γ = 0.01 and α = 5.

Compactness priors. In order to achieve our last ob-
jective of a compact segmentation boundary, we introduce
two priors into network training. First, we introduce a
smoothness prior, in the form of a smoothness loss derived
from the well-known graphcuts algorithm [26].

Lsmooth =
1

|E|
∑

t1,t2∈E

−ω ∗ log
(
θt1,t2
π

)
|wt1 −wt2 | (6)



Figure 5. Conditional segmentations predicted by our method. We show the corresponding UVs computed with SLIM, colored by the
isometric distortion metric I . Selection points are marked in red, and %DI is reported beneath each UV.

where E is the set of mesh edges E ⊂ F × F, θt1,t2 is the
dihedral angle between triangles t1,t2 which share an edge,
and ω is an energy scaling term. In all our experiments, we
set ω = 0.1.

Lastly, LSCM does not perform as well with discon-
nected domains. To guarantee the segmentation boundary
encloses a single connected region, we add a floodfill prior
during training, in which we identify all triangles with prob-
abilites ≥ 0.5, and take the largest contiguous patch of
these triangles which contains the source triangle t∗. We
mask out the weights of the other triangles, generating the
floodfill weights w∗. We pass the floodfill weights into the
parameterization layer and pass the resulting UV into our
threshold loss. In order to discourage spurious weights out-
side of the compact segmentation boundary, we penalize the
original probabilities by passing them into our smoothness
loss Lsmooth(w). Incorporating all of these terms, our final
loss function during end-to-end training is

L = Lthreshold(w∗) + Lsmooth(w) (7)

3.3. Near-Developable Segmentation Pretraining

In practice we need to initialize our system to produce
reasonable segmentations which can be further improved
through our end-to-end training. To this end, we pretrain
our network to segment developable (flattenable with no
distortion) patches with boundaries at sharp creases.

As there is no existing dataset of meshes with labeled
distortion-aware decompositions, we build a synthetic one.
We consider a collection of geometry primitives – cones,
cubes, cylinders, spheres, and tetrahedrons, with known de-

velopable decompositions (excluding the sphere). To gen-
erate training shapes we sample a subset of primitives, ap-
ply additional non-rigid deformations (twist, bend, taper,
stretch), and compute a CSG union on these perturbed prim-
itives to obtain a watertight mesh. For each mesh, we gener-
ate an additional augmented mesh by sampling 10% of the
vertices and jittering them along their normals. We apply
Laplacian smoothing to the resulting mesh. See the supple-
mental for more details and pseudocode.

For each of our geometry primitives, we take their natu-
ral developable decomposition as the starting ground truth
(i.e. cubes are segmented into planes, cylinders into the
body and two caps, etc.). To create ground truth segmenta-
tion labels we retain correspondences to the original prim-
itives, and use them to segment the perturbed mesh. Note,
however, that our augmentations do not preserve devel-
opability, though developable segmentation is typically too
strong of a constraint for practical applications outside of
fabrication. Instead we ensure near-developability of target
segmentations by parameterizing each augmented segmen-
tation with SLIM [42], and discarding all patches with iso-
metric or conformal distortion above a threshold of 0.05.
Our measures of isometric and conformal distortion are
DI = max(σ1, 1/σ2) and DC = (σ1 − σ2)

2, respectively,
where σ1 and σ2 are the singular values of the Jacobian of
the UV mapping in decreasing order.

To generate training samples we simulate user selection
by randomly sampling 5% of the triangles (up to a maxi-
mum of 20) on valid near-developable patches (excluding
regions corresponding to spheres), to use as initial selec-



Figure 6. Generation of our “near-developable” synthetic dataset:
we draw random geometric primitives, deform them, and apply a
CSG union to obtain our final synthetic shape, while transferring
the correspondence to the original segmentation (yellow). UVs of
the corresponding segmentations are shown in the insets.

tions t∗. The dataset construction procedure is illustrated in
Fig. 6. Our training dataset consist of 87 meshes with 7,912
initial selections, and our test set consists of 17 meshes with
1,532 initial selections. We pretrain our edge encoder net-
work ϕE and classifier network ϕC with L2 supervision us-
ing Adam with learning rate 10−3 for 150 epochs.

3.4. Distortion Self-Supervised Training

In the second phase of training, we train the system end-
to-end with the differentiable parameterization layer over a
dataset of natural shapes taken from the Thingi10k dataset
[76]. We download a subset of meshes from Thingi10k, fil-
tering for meshes which are between 3K and 20K faces, are
manifold, and have one connected component. We remesh
the shapes using the isotropic explicit remeshing tool from
Meshlab [6] so that the meshes have between 5K and 12K
edges. For each remeshed object, we sample 1% of the
surface triangles to use as training anchor samples, up to
a maximum of 50 faces. Our resulting training set consists
of 315 meshes with 6,300 initial selections, and a validation
set containing 86 meshes with 1,720 initial selections.

Similar to the pretraining phase, we batch input pairs of
meshes and initial triangle selections. To avoid distribution
shift, we additionally draw training samples from the syn-
thetic dataset 50% of the time and apply strong supervision
to those predictions. We perform end-to-end training using
Adam with learning rate 10−3 for 100 epochs.

3.5. Inference and Patch Postprocessing

During inference, we compute UV maps with SLIM [42]
instead of LSCM, as the former directly minimizes isomet-
ric distortion. Thus the isometric distortion of the LSCM
UV map is an upper bound of the isometric distortion
achieved by the SLIM UV map. We avoid using SLIM in
the parameterization layer during training as it is an iterative
and heavy optimization technique. However, we consider
this to be interesting follow-up work. As SLIM assumes a
disk-topology patch, we run floodfill as before (Sec. 3.2) to
get a single connected component, and apply a seam-cutting
algorithm by iteratively choosing the longest boundary loop

and its nearest boundary loop, and cutting between them
along the shortest path until the patch is disk topology.

Lastly, in order to straighten the segmentation’s bound-
ary and reduce jagged features, we run the graphcuts algo-
rithm [26] over our model predictions, where the graph’s
node potentials are set to W and the edge weights are set to
− log( θπ ) where θ is the dihedral angle between two faces.

4. Experiments
In this section we quantitatively and qualitatively evalu-

ate the distortion-aware selections produced by our method
and a few baselines. Since some methods only focus on
segmentation heuristics, we post-process all segmentations
using SLIM [42] to get the resulting UV parameterizations.

We describe our evaluation metrics and datasets
(Sec. 4.1), discuss segmentations produced with our method
(Sec. 4.2), compare to baseline alternatives (Sec. 4.3), and
run ablations (Sec. 4.4).

4.1. Experimental Setup

Datasets. We evaluate our method and baselines on three
datasets. First, we use our Near-Developable Segmentation
Dataset, as it is the only dataset that has ground truth
parameterization-aware segmentations. We evaluate on a
held-out test set composed of 47 meshes and 1,532 (face,
segmentation) samples. Second, we create a dataset of
natural shapes from Thingi10k [76] models, filtered to have
medium face count, manifoldness and a single connected
component, pre-processed as described in Sec. 3.4, leading
to 110 test shapes with 2,125 samples (in addition to the
401 shapes used during training). These models are mostly
originally designed for 3D printing, and cover a wide range
of geometric and topological features associated with real
objects. Third we use the Mesh Parameterization Bench-
mark dataset [51] composed of 337 3D models originally
designed for digital art. We filter for meshes in the same
way as with Thingi10k, which leaves us with 32 models
and 269 sampled points. While this data is annotated with
ground truth artist UV segmentations, global parameteri-
zation is a different objective from distortion-aware local
segmentation (as discussed in Sec. 2), so we reserve the
comparison to the supplemental.

Evaluation Metrics. Our work is motivated by ap-
plications that require maximizing patch area, while
keeping distortion under some user-prescribed bound. Our
Near-Developable Segmentation Dataset is the only dataset
with relevant labels, for which we report standard metrics –
accuracy, mean average precision and F1 score.

When ground truth segmentations are not available, we
propose a novel metric %Dλ

I , which we define as the per-
centage of the faces parameterized with isometric distortion
below threshold λ: Dλ

I = |{t : DI(t) < λ}|/|F|, where the



numerator enumerates faces t with distortion below λ, nor-
malized by the total faces in F. We use the following energy
for our isometry measure DI = (max(σ1,

1
σ2
)−1)2, where

(σ1, σ2) are the singular values of the Jacobian of the UV
parameterization [57]. We set λ = 0.05, as we find that this
distortion level leads to no significant visual distortion. A
higher percentage %Dλ

I indicates a larger, more distortion-
aware segmentation. We report %Dλ

I for varying λ in the
supplemental to show that our conclusions are robust.

4.2. DA Wand Results

We run our method on all three datasets and show exam-
ples in Fig. 5. Our method handles meshes with complex
geometric features and topological variations, consistently
obtaining a large patch which can be parameterized with
little distortion. We handle near-developable surfaces of
mechanical parts by splitting them into correct primitives
such as cylinders, planes, and annuli, even in presence of
high frequency noise (A3, B1, B3, C1, C4). Global anal-
ysis enabled by MeshCNN allows our method to extend
segments far beyond the selection (A1, B2, B4, C3). Our
method also discovers large low-distortion patches on or-
ganic shapes with no apparent decomposition into primi-
tives (A2, A4, C2), thanks to distortion-guided training.

4.3. Baselines

Acc ↑ mAP ↑ F1 ↑
LogMap 0.54 0.19 0.24
DCharts 0.85 0.37 0.47
DA Wand (Ours) 0.91 0.8 0.82

Table 1. Accuracy (Acc), Mean average precision (mAP), and F1
score (F1) reported for each respective method on the ground truth
segmentations in our synthetic test dataset.

Though none of the prior methods discussed in Sec. 2
directly address the distortion-aware selection problem, we
identify two methods that can be adapted to our problem.

First is the quasi-developable segmentation technique,
DCharts, originally devised for global parameterization-
aware segmentation [18]. The original method uses Lloyd
iterations to optimize over multiple charts, which we adapt
to single-chart segmentation conditioned on an initial tri-
angle. Starting with the selected triangle, we greedily add
triangles with the smallest DCharts energy, defined at each
triangle with respect to our patch as the product of the fit-
ting (developability), compactness, and straight boundary
energies. As in the original work, we use the same weights
(α = 1.0, β = 0.7, γ = 0.5), and in every iteration grow
out the patch by adding adjacent triangles with fitting error
under the threshold Fmax = 0.2. We maintain a priority
queue of triangles adjacent to the chart boundary based on
the DCharts energy, and recompute the fitting energy af-

Synthetic Thingi10k Mesh Param. Time (s)

%DI ↑ N %DI ↑ N %DI ↑ N tseg ↓
LogMap 6.5 236 7.5 266 5.0 179 0.15
DCharts 14.3 676 15.1 770 1.6 2754 32.92
DA Wand (Ours) 19.9 951 19.9 1031 14.3 1281 0.11

Table 2. Median %DI and N reported for each method across
the three benchmark datasets. We also report the median time to
segmentation (tseg) in seconds across all our test samples.

ter popping a triangle from the queue to ensure it meets the
threshold for the current patch. Following the original work,
after each iteration (when the queue becomes empty) we re-
estimate the developability proxy vector NC and angle θ,
which are used for the fitting energy, and re-initialize the
queue. We terminate once there are no more valid triangles
even after re-estimating the developability proxy.

Second, we adapt a local parameterization technique to
guide segmentation. Specifically, we run a version of the
logarithmic map implemented with the Vector Heat Method
[49] which computes a local parameterization of the whole
mesh centered at the selected triangle. We mark all triangles
that are parameterized with isometric distortion DI below
0.05 (our evaluation threshold) as valid, and use the largest
contiguous patch of valid triangles containing the selection
as the segmentation.

For consistency, we postprocess all baseline results with
the graphcuts [26] and floodfill algorithms as in Sec. 3.5.
The resulting segmentation is guaranteed to have a disk
topology, which we parameterize using SLIM [42].

While D-Charts leverages similar developability and
compactness priors to our work, these priors are not
context-aware, as they only incorporate local patch and tri-
angle information, and the relative importance of these pri-
ors have to be manually tuned. We illustrate this in Fig. 7,
where the parameters need to be significantly altered for
DCharts to produce the expected segmentation on a sim-
ple cylinder body. However, these same parameter settings
swings the bias in the other direction, so that it segments
only the curved region in the ashtray mesh from Thingi10k
(second row) while ignoring the large planar patch right
next to it. By virtue of its learned inductive bias over many
types of surfaces, our method can identify both segmenta-
tions without any additional parameter tuning or training.

Our other baseline derives segmentations with the loga-
rithmic map, which makes them trivially distortion-aware.
A key limitation, however, is that the logarithmic map pa-
rameterizes the entire surface, so cannot ignore regions that
introduce heavy distortion (e.g., high-curvature geometry
near the selection). We illustrate this in Fig. 8, where on a
simple cylinder, the Exponential Maps baseline segmenta-
tion creeps into the top cap, which introduces enough distor-
tion to prevent the segmentation from reaching the far end
of the cylinder body. On the other hand, our method iden-



Default DCharts Proxy-Biased DCharts Our Method

Figure 7. Segmentations predicted by DCharts with default pa-
rameters (Default DCharts), DCharts biased towards the devel-
opability proxy energy (Proxy-Biased DCharts), and DA Wand
(Our Method). The parameter values are given for each DCharts
configuration. We show results on a cylinder mesh (top row), and
an ashtray mesh from our Thingi10k dataset (bottom row). UV
embeddings on the right are colored by isometric distortion DI .

Logarithmic Map Our Method
Figure 8. Segmentations predicted on a cylinder mesh (top row)
and a noisy cylinder from our Thingi10k dataset (bottom row), for
the Logarithmic Map baseline and our method. UV embeddings
on the right are colored by isometric distortion DI .

tifies the ideal cylindrical segmentation on both the simple
cylinder and the noisy sample from the Thingi10k dataset.

Tab. 1 reports the classification performance of each
method with respect to the ground truth segmentations for
our synthetic test set. Unsurprisingly, our method outper-
forms the baselines on the segmentation metrics. We re-
port our thresholded-distortion metric %D0.05

I on all three
datasets in Tab. 2. We also report the number of segmented
triangles (N) and time to segmentation (tseg) in seconds. Our
method outperforms the baselines by a wide margin on all
three datasets. Our segmentation time is 25% faster than the
logarithmic maps baseline (LogMap) and several orders of
magnitude faster than DCharts. Please see the supplemental
for additional qualitative comparisons and time analysis.

4.4. Ablations

We justify our design choices through a series of ab-
lations (Tab. 3). Training our method without the com-
pactness priors (b, c) leads to larger but higher distortion
patches. Note that the pre-training segmentations (d) are
nearly half the size of our final segmentations. On the other
hand, removing the pre-training step (f) or not incorporating
synthetic dataset samples during distortion self-supervision
training (e) significantly degrades the results, which illus-

Synthetic Thingi10k Mesh Param.

%DI ↑ N %DI ↑ N %DI ↑ N

Our Method (a) 19.9 951 19.9 1031 14.3 1281
No floodfill (b) 15.4 1056 16.5 1113 12.3 997
No smoothness loss (c) 10.1 1405 11.6 1500 6.8 1220
No distortion training (d) 10.1 478.5 10.0 647 3.5 647
No mixed training (e) 4.5 2125 10.2 1729.2 2.3 886
No pre-training (f) 4.3 2561 7.0 2537 1.2 1512

Table 3. Median %DI and N for our method and different ablation
settings across our three benchmark datasets.

trates the importance of this initialization step.

5. Discussion and Future Work
We presented a framework which enables training a neu-

ral network to learn a data-driven prior for distortion-aware
mesh segmentation. Key to our method is a probability-
guided mesh parameterization layer, which is differentiable,
fast, and theoretically grounded. Our wLSCM formulation
can be viewed as a way to relax the problem of segmenting
a local domain which induces a low distortion parameter-
ization. Our experiments demonstrate that our method is
an effective technique for producing distortion-aware local
segmentations, conditioned on a user-selected triangle.

Our method holds a few limitations. First, the use of
MeshCNN [15] leads to dependence on the triangulation, in
the form of a limited receptive field. Second, the output of
our method is not guaranteed to be disk topology (necessary
to produce a valid UV map), and is post-processed using a
simple cutting algorithm to achieve this property.

We see many future directions for our work. Instead of
using distortion as guidance, other differentiable quantities,
such as curvature or visual losses, can be used to guide our
segmentation through similar custom differentiable layers.
Additionally, we wish to extend our work to predict a seg-
mentation through edges instead of faces, which would en-
able seam generation within the segmented region.
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