
Self-Supervised Representation Learning for CAD

Benjamin T. Jones1 Michael Hu1 Milin Kodnongbua 1 Vladimir G. Kim2 Adriana Schulz1

1University of Washington 2Adobe Research
{benjones, mkhu, milink, adriana}@cs.washington.edu vokim@adobe.com

Self-Supervised Representation Learning

Part Classification Modeling 
Segmentation

Machining
Segmentation

Few-shot Task Learning

Ta
sk

D
ec

od
er

Pr
et

ra
in

ed
En

co
de

r

Sm
al

l
La

be
le

d
D

at
as

et

En
co

de
r

D
ec

od
er

u,
v

d
x,

y,
z

B-Rep ModelLarge Unlabeled
Dataset

Face Embeddings Rasterization

Figure 1. Overview of our technique. We train a geometric self-supervision task of a large, unlabeled dataset of CAD Boundary Repre-
sentations (B-Reps) to learn geometrically relevant representations for each B-Rep face. These pre-trained representations are then used to
train few-shot segmentation and classification learning tasks on labeled B-Rep datasets.

Abstract

Virtually every object in the modern world was created,
modified, analyzed and optimized using computer aided de-
sign (CAD) tools. An active CAD research area is the use
of data-driven machine learning methods to learn from the
massive repositories of geometric and program represen-
tations. However, the lack of labeled data in CAD’s na-
tive format, i.e., the parametric boundary representation
(B-Rep), poses an obstacle at present difficult to overcome.
Several datasets of mechanical parts in B-Rep format have
recently been released for machine learning research. How-
ever, large-scale databases are mostly unlabeled, and la-
beled datasets are small. Additionally, task-specific label
sets are rare and costly to annotate. This work proposes
to leverage unlabeled CAD geometry on supervised learn-
ing tasks. We learn a novel, hybrid implicit/explicit surface
representation for B-Rep geometry. Further, we show that
this pre-training both significantly improves few-shot learn-
ing performance and achieves state-of-the-art performance
on several current B-Rep benchmarks.

1. Introduction

Almost every human-made object that exists today
started its life as a model in a CAD system. As the preva-

lent method of creating 3D shapes, repositories of CAD
models are extensive. Further, CAD models have a robust
structure, including geometric and program representations
that have the potential to expose design and manufactur-
ing intent. Learning from CAD data can therefore enable
a variety of applications in design automation and design-
and fabrication-aware shape reconstruction and reverse en-
gineering.

An important challenge in learning from CAD is that
most of this data does not have labels that can be lever-
aged for inference tasks. Manually labeling B-Rep data is
time consuming and expensive, and its specialized format
requires CAD expertise, making it impractical for large col-
lections.

In this work we ask: how can we leverage large databases
of unlabeled CAD geometry for analysis and modeling
tasks that typically require labels for learning?

Our work is driven by a simple, yet fundamental observa-
tion: the CAD data format was not developed to enable easy
visualizing or straightforward geometric interpretation: it
is a format designed to be compact, have infinite resolu-
tion, and allow easy editing. Indeed, CAD interfaces con-
sistently run sophisticated algorithms to convert the CAD
representation into geometric formats for rendering. Driven
by this observation, our key insight is to leverage large col-



lections of unlabeled CAD data to learn to geometrically
interpret the CAD data format. We then leverage the net-
works trained over the geometric interpretation task in su-
pervised learning tasks where only small labeled collections
are available. In other words, we use geometry as a model
of self-supervision and apply it to few-shot-learning.

Specifically, we learn to rasterize local CAD geometry
using an encoder-decoder structure. The standard CAD
format encodes geometry as parametric boundary repre-
sentations (B-Reps). B-Reps are graphs where the nodes
are parametric geometry (surfaces, curves, and points) and
edges denote the topological adjacency relationships be-
tween the geometry. Importantly, the parametric geome-
try associated with each node is unbounded, and bounds are
computed from the topological relationships: curves bound-
ing surfaces and points bounding curves. As shown in Fig-
ure 2, the geometry of a B-Rep face is computed by clipping
the surface primitive to construct a surface patch, where the
clipping mask is constructed from adjacent edges.
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Figure 2. A B-Rep face (a) is a surface patch cut from a geometric
primitive surface (b). The adjacent edges define a clipping mask
(c), which we learn an SDF (d).

Thus, B-reps are constructed piecewise by explicitly de-
fined surfaces with implicitly defined boundaries. This ob-
servation drives our proposed learning architecture, which
reconstructs faces by jointly decoding the explicit surface
parameterization as well as the implicit surface boundary.
Our proposed encoder uses message passing on the topo-
logical graph to capture the boundary information to encode
B-Rep faces. To handle graph heterogeneity (nodes com-
prised of faces, edges, and, vertices), we use a hierarchical
message passing architecture inspired by the Structured B-
Rep GCN [16]. Our decoder uses the learned embeddings
as latent codes for two per-face neural function evaluators:
one mapping from R2 → R3 that encodes the face’s para-
metric surface (Figure 2 (b)), and one mapping R2 → R

that encodes the face’s boundary as a signed distance field
(SDF) within the parametric surface (Figure 2 (c,d)).

We apply our proposed model of B-Rep self-supervision
to learn specialized B-Rep tasks from very small sets of la-
beled data—10s to 100s of examples vs 10k to 100k. To
do this, we use the embeddings learned on self-supervision
as input features to supervised tasks. We evaluate our ap-
proach on three tasks and datasets from prior work [3,6,21]
and validate our findings across varying training set sizes.
We show that our model consistently outperforms prior su-
pervised approaches, significantly improving performance
on smaller training sets. By using less data, our approach
also proves substantially faster to train, making possible ap-
plications that depend on training speed. We believe that
our differentiable CAD rasterizer paves the way to many
exciting future applications, and show one possibility by
prototyping a reverse engineering example.

2. Related Work
Learning from CAD Collections. Recent interest in
learning from CAD data has grown due to advances in
machine learning (ML) and the release of large CAD
datasets, including collections of B-reps and program struc-
ture [20,37], CAD sketches [31], and CAD assemblies [16].
Prior work leveraged such collections for diverse applica-
tions, including segmentation [6], classification [3], assem-
bly suggestions [16, 36], and generative design of CAD
sketches [10, 28, 31, 32], B-Reps [13, 14], and CAD pro-
grams [37, 38].

However, a fundamental gap separates the capabilities
shown in past work and real-world applications that can
transform CAD design, such as auto-complete modeling
interfaces or reconstruction of complex geometries: the
lack of task-specific labels in large datasets. For exam-
ple, most prior work leveraged the Onshape Public dataset
[20], which generally contains designs created by novice
CAD users and so does not capture the design process of
CAD experts. The Fusion 360 dataset [37] is significantly
smaller than Onshape’s; other public resources, such as
GrabCAD [1], contain designs from multiple CAD systems
that are mostly unlabeled. In this work, we advance the de-
velopment of new CAD learning applications by proposing
a unique direction for leveraging unlabeled data in the su-
pervised learning of CAD geometry.

Learning on B-Reps. A CAD B-Rep is a specialized data
structure that encodes solid geometry as a graph of para-
metric shapes and their topological relationships; it has the
advantages of arbitrary spatial resolution and easy program-
matic editability. B-Reps can be exported to other common
geometric representations, such as polygonal meshes, using
geometric CAD kernels [2]. Several techniques for learning
on B-Reps use message passing networks. BRepNet [21]



and UV-Net [15] create a reduced graph of B-Rep faces,
while the Structured B-Rep GCN (SB-GCN) [16] proposes
a hierarchical structure over the four classes of topological
entities (faces, loops, edges, and vertices). However, these
methods require a CAD kernel in the loop to generate the
features from the B-Rep format and large labeled sets for
learning. While we use a CAD kernel to train our encoder-
decoder on unlabeled data, our task-specific networks can
be trained on small sets of labeled data without requiring
a CAD kernel at inference time. More recent applications
of machine learning to B-Rep structures have focused on
generation [13, 14, 39].

Neural Shape Representations. Neural shape generation
is an active research area with a large number of representa-
tions used by prior techniques. Some methods operate over
a fixed discretization of the domain into points [4, 9], voxel
grids [5, 24], or vertex coordinates of a mesh template [33].
Due to irregularity of geometric data, functional representa-
tion is often used to learn to represent shapes as continuous
functions, such as surface atlases [12,40] or signed distance
fields defined over a volume [7, 25, 29]. In this work we
chose to use functional representation of the output shape
as a neural occupancy and a 3D mapping function over UV
domains. Functional representation is well-suited for het-
erogeneous geometry with varied levels of detail since it
does not require a fixed sampling rate to be chosen. Further-
more, our representation, which combines implicit fields
and atlas-like embeddings, directly produces a surface and
can be easily supervised with the ground truth B-Rep data.

Few-Shot Learning. Performance of strongly supervised
methods is commonly hampered by the lack of training
data. Few-shot learning techniques often rely on learning
rich features in a self-supervised fashion and then using a
few examples to adapt these features to a new task [35].
One common self-supervision strategy is to withhold some
data from the original input and train a network to predict it.
For example, one can remove color from images and train
a network to colorize [22, 41], remove part of an image and
train a network to complete it [30], randomly perturb ori-
entation and predict the upright position [11], or randomly
shuffle patches and predict their true ordering [8, 26]. An-
other commonly used tool is auto-encoders, which encode
input to a lower-dimensional space and then attempt to re-
construct it with a decoder [18,19]. Our approach is closest
to that of auto-encoders, except our input and output are in
two different representations: CAD B-Reps and surface ras-
terizations. This lets us learn features related to the actual
3D geometry.

3. Geometric Self-Supervision

Our goal is to learn relevant features of CAD B-Reps
that can be used on many different modeling and analy-
sis tasks. We use an encoder-decoder architecture on B-
Rep surfaces to learn a latent space of relevant features.
Based on the insight that the learned features should in-
clude a geometric understanding of CAD shapes, we train
our encoder-decoder to learn to rasterize CAD models. We
further choose to learn this embedding at the face level as
opposed to learning a feature per part. This is driven by our
application domain, where tasks typically require an under-
standing of local topological information. Figure 1 shows
our approach at a high-level.

Decoder. As noted previously, the format we selected for
decoder output is driven by the observation that B-Reps are
compositions of explicitly represented surfaces with implic-
itly represented boundaries. For example, the geometry
associated with faces are unbounded parametric surfaces
S : R2 → R3, and the boundary of such surfaces is cap-
tured by the geometry of the neighboring edges. Edges, in
turn, are defined by unbounded parametric curves bounded
by neighboring vertices. Vertices are represented as points.
In addition to domain parameters (u,v), parametric geome-
try has other, fixed parameters (like radius or cone angle),
which we call shape parameters. A bounded surface is
called a clipped surface, and the bounding function, which
is defined implicitly by the bounding topology, is its clip-
ping mask, illustrated in Figure 2 (c).

For self-supervision, we must choose an output geo-
metric representation for surface patches with boundary.
Bounded patches lack a natural parameterization and so
are not suitable to learn directly as parametric functions.
They are also difficult to represent as neural implicits [27].
However, the clipping function itself defines a closed re-
gion within the parameterization of the supporting surface,
which is a function that lends itself well to implicit rep-
resentation in 2D. We therefore choose to learn an implicit
function of the clipping region as a 2D signed distance func-
tion. Since this representation relies on an explicit surface
parameterization, we also learn the supporting surface pa-
rameterization. Crucially, this does not require parameter-
izing a boundary.

We choose to use a conditional neural field as our de-
coder since this representation can capture both explicit and
implicit geometry. Specifically, the explicit parametric sur-
face is an R2 → R3 function, mapping (u, v) coordinates of
a face’s supporting surface to the 3D position of that point
(x, y, z). The clipping mask encoded as an SDF over the
parametric domain is a function R2 → R, which maps the
same (u, v) coordinates to a value (d) measuring the signed
distance to the boundary. We combine these two function



to learn a single field that maps R2 → R4. We param-
eterize this field as a 4-layer, fully connected ReLU net-
work, where the input coordinates and conditioning vector
are concatenated to the output at every hidden layer (sim-
ilar to DeepSDF [29], see our supplemental material for a
full definition). The conditioning vector is the output of our
face encoder described below. We call the evaluation of this
field “rasterization” because raster sampling the field and
filtering by d yields a 3D surface rasterization.

To normalize the field input range and constrain the uv-
space, we must sample while rasterizing. We reparameter-
ize the uv-space of each surface prior to training so that the
clipping mask fits within the unit square ([0, 1]2). In this
way, our encoder-decoder is learning the explicit surface,
the implicit boundary, and the support range of the implicit
boundary mask.

Encoder. Our encoder design is driven by the same obser-
vation, i.e., that B-Reps are compositions of explicitly rep-
resented surfaces with implicitly represented boundaries.
For the encoder, this means that we must capture adjacent
topological entities. We propose to encode this using mes-
sage passing on the topological graph.

As Figure 3 shows, the B-Rep topological graph has a hi-
erarchical structure; high-dimensional topological elements
are adjacent only to the immediate lower dimensional enti-
ties: faces are adjacent to their bounding edges, which are
adjacent to their end-point vertices. Driven by this obser-
vation, we use as our face-encoder a hierarchical message
passing network inspired by SB-GCN [16], a graph convo-
lutional network that leverages the hierarchical structure of
B-Reps to learn embeddings for each topological entity.

Our encoder is structured as two graph message pass-
ing layers, first aggregating vertex information for the edges
they bound, and then this bounded edge information for the
faces. Crucially, we need to (1) support both node and adja-
cency level features in our message passing – since whether
a vertex is the start or end of an edge, and whether an edge is
to the left or right of a face interior is critical to correctly re-
producing that edge – and (2) support highly variable node
degree since faces vary widely in the number of bounding
faces. To achieve these goals we use multi-headed additive
graph attention [34] with graph-adjacency features.

Existing B-Rep representation learning networks [15,16,
21] use evaluated geometry information as input features
in addition to pure parametric geometry, such as surface
bounding boxes and areas. These features are computed
by a CAD kernel, i.e., modeling software that understands
how to construct and evaluate CAD geometry. Since we
want to force our network to learn the evaluation function
of a CAD kernel as well as be fully differentiable back to
the shape parameters, we only use the parametric geometry
definitions as input features. Please see our supplemental

Vertices

Figure 3. A boundary representation consists of parametric surface
patches that are bounded by parametric edges, which in turn are
bounded by vertices. The relationship between these entities forms
a hierarchical graph.

material for the full details of our encoder architecture and
input encodings.

Training. We trained our encoder-decoder to minimize
L2 losses at randomly sampled uv-points on each face’s
supporting surface. We randomly sampled in the re-
parameterized uv-square (u, v) ∈ [−0.1, 1.1]2 to ensure
positive and negative SDF samples were collected, biased
to preferentially sample near clipping boundaries (see sup-
plemental for details).

We trained our geometric self-supervision over 23266
shapes from the training set of the Fusion 360 Gallery Seg-
mentation dataset [37]. Optimization was performed using
the Adam optimizer [17] with a learning rate of .0005. For
our experiments, we used an embedding size of 64 for all
message passing layers, 2 attention heads for the vertex-
to-edge layer, 16 attention heads for the edge-to-face layer,
and a hidden size of 1024 for all self-supervision decoder
layers.

4. Few-Shot Learning

In typical task-specific applications, it is challenging to
find or construct large collections of labeled CAD data.
Therefore, we propose leveraging our rich latent space to
enable supervised learning over very small collections. In
addition to enabling training on scant data, our approach
also ensures that we do not need to use computationally ex-
pensive CAD kernel functionality to generate features at in-
ference time.

We propose two few-shot learning setups. The first con-
sists of B-Rep segmentation tasks, which assign a task-
specific label to each face of a B-Rep, e.g., the type of ma-
chining technique that can be used to construct that surface.
The second consists of B-Rep classification tasks, which as-
sign a label to an entire B-Rep, e.g., the mechanical function
of that part (gear, bracket, etc.). We frame both setups as
multi-class classification problems. See our supplemental



material for full network specifications.

B-Rep Segmentation Network. Since our encodings are
learned at the face level, they can be used directly as in-
put for face-level predictions. Classification of a face of-
ten depends on its context within a part; we therefore use a
small message passing network to capture this context, i.e.,
a 2-layer Residual MR-GCN [23]. We use pre-computed
face embeddings from our geometric self-supervised learn-
ing as node features and face-face adjacency as edges. We
construct this graph by removing vertex nodes from the B-
Rep graph and contracting edge nodes, preserving multiple
edges (if any) between faces. Output predictions for each
face are then made with a fully connected network with two
hidden layers.

B-Rep Classification Network. While we do not have la-
tent codes for entire B-Rep shapes, we take a similar ap-
proach to previous B-Rep learning architectures and max-
pool learned features for each face. To do this, we project
each face’s embedding into a new vector for pooling using
a fully connected layer, followed by a second projection of
the pooled part features into the prediction output space.

5. Results
We validate the application of our proposed approach by

applying our method to three few-shot learning tasks. We
further evaluate our method by analyzing rasterization re-
sults.

5.1. Construction-Based Segmentation

The first task we apply our method to is segmentation
of B-Rep geometry by the modeling operation used to con-
struct each face (extrusion, revolution, chamfer, etc.). This
requires the model to understand how geometry is con-
structed in CAD software. For this task we use 27450 parts
from the the Fusion 360 Gallery dataset, a collection of
user-constructed parts annotated with one of 8 face con-
struction operations on each face [21].

We first pre-trained our geometric self-supervision net-
work over this dataset without labels, then trained our face-
level prediction network using the face embeddings from
the self-supervision. Figure 4 shows some classification re-
sults. Our method achieves 65% accuracy after seeing just
10 training examples, 79% after 100, and is 96% accurate
when given all 23266 examples in the training set.

We compare our method to three network architectures
for B-Rep learning: SB-GCN [16], BRepNet [21], and UV-
Net [15]. SB-GCN is a hierarchical message passing net-
work that incorporates information from all three dimen-
sions of B-Rep geometry (faces, edges, and vertices), and
uses an intermediate loop layer to aggregate closed paths

Ground Truth Ours Ground Truth Ours Ground Truth Ours

Figure 4. Segmentation example results for the Fusion 360 gallery
task. The CAD operation that created each face is indicated by
color. (Left) Our model’s prediction. (Right) The ground truth.

of edges, and uses both the parametric geometry definitions
and kernel computed features (bounding boxes and mass
properties) as input features. BRepNet defines a convolu-
tion operator relative to co-edges in a B-Rep structure and
uses parametric face and edge types as well as concavity
and edge length features. UV-Net is a message passing net-
work between adjacent faces; it uses grid-sampled points of
faces and edges as its features. For UV-Net, we train an
end-to-end version, as well as a self-supervised version us-
ing the part augmentation supervision and contrastive loss
described in [14] (UV-Net-SS). For UV-Net-SS, we use the
same task-specific network as our method to fairly compare
the self-supervision. We trained and tested each network on
random subsets of the training data that ranged from 10 to
23266 examples. We repeated this 10 times for each train-
ing set size (all three methods were given the same training
sets).

Figure 5 plots the average accuracy for each training
size across these runs with a bootstrapped 95% confidence
interval. Our method outperforms the baselines for all
dataset sizes, doing so by a significant margin in the few-
shot regime. It significantly outperforms UV-Net with self-
supervision, indicating that our geometric self-supervision
is much more effective than a contrastive loss setup. It
also has a smaller confidence interval, indicating that pre-
training on our rasterization task makes classifications more
robust to choice of training example.1 In addition to these
quantitative results, Figure 6 compares classifications at the
100 example level. Our method starts generalizing with 10s
to 100s of examples, whereas the baselines fail to generalize
and usually learn the most frequent label at this data scale.

We further note that training our method is significantly
faster to train than the baselines (see Figure 7). This raises
the possibility of segmentation tasks trained on-the-fly to
enable predictors to be trained and deployed during the

1BRepNet’s very small confidence interval at small training set sizes is
an artifact of it predominantly or entirely predicting one class.
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Figure 5. Comparison of our method versus SB-GCN, UV-
Net, BRepNet, and Self-Supervised UV-Net (UV-Net-SS) for
construction-based segmentation on the Fusion 360 Gallery Seg-
mentation dataset. The mean accuracy across 10 training runs is
plotted with a bootstrapped 95% confidence interval.
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Figure 6. Few shot segmentation results from our method versus
baseline models on the Fusion 360 Gallery task, trained over just
100 models. Face color indicates the modeling operation used to
create a face. Our model performs significantly better in the low
data regime, where it can differentiate operations. However, the
baselines largely guess the most common operation, which is Ex-
trudeSide.

modeling process.

5.2. Manufacturing-Driven Segmentation

The second segmentation problem we considered is face
segmentation, which classifies how each face is manufac-
tured. We evaluated this on the MFCAD dataset [6], a syn-
thetic dataset of 15488 CAD models where each face is
labeled with one of 16 types of machining feature (cham-
fer, through hole, blind hole, etc.) The parts in this dataset
are generated by applying machining operations to square
stock and so consist entirely of planar faces and straight
line edges. Compared to the Fusion 360 Gallery dataset,
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Figure 7. Training times on the Fusion 360 segmentation task. All
models were trained on an NVIDIA RTX 2080 Ti, and reported
time is the average time per epoch at each training set size.

this task has twice as many classes to choose from and re-
lies more on neighborhood and boundary information since
all faces are planar. It also shows the ability of our approach
to generalize pre-trained features to out-of-distribution data
since we use face codes pre-trained on Fusion 360 Gallery
models (in this and all examples), which unlike MFCAD
are all human-modeled.

We compare this task to the same four baselines, illus-
trated qualitatively in Figure 8 and quantitatively in Fig-
ure 9. We removed curvature features from BRepNet since
they are universally zero on this dataset, and BRepNet re-
quires all input features to have non-zero standard devi-
ation. As before, our method outperforms the baselines
at few-shot learning and achieves comparable accuracy at
large data sizes (Ours, UV-Net, and BRepNet are essen-
tially perfect given sufficient training data). UV-Net per-
forms slightly better with more samples (1000); we hypoth-
esize this is partially due to a domain gap between human-
modeled parts of the Fusion 360 Gallery dataset we used in
our self-supervised learning stage, and the synthetic parts
of MFCAD, which might enable competing techniques to
learn how to use features specific to the synthesis process to
their advantage. The stability of our prediction accuracy as
measured by confidence interval significantly exceeds both
baselines.

5.3. Part Classification

In addition to segmentation, we also applied our method
to part classification. For this, we used the FabWave [3]
dataset, a hand-labeled subset of GrabCAD [1] that is cat-
egorized into classes of mechanical parts (gears, brackets,
washers, etc.). Many parts within a category are parametric
variations of each other. This task is important for under-
standing the function of mechanical parts in assemblies.
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Figure 8. MFCAD few-shot segmentation comparison at 100 train
samples. Top row shows ground truth labeling, followed by our,
UV-Net, and BRepNet predictions.
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Figure 9. Comparison of our method to SB-GCN, UV-
Net, BRepNet, and Self-Supervised UV-Net (UV-Net-SS) for
manufacturing-based segmentation on the MFCAD dataset. The
mean accuracy across 10 training runs is plotted with a boot-
strapped 95% confidence interval.

As a baseline comparison, we compare only against SB-
GCN and UV-Net since BRepNet does not support classi-
fication. Again using face codes pre-trained on Fusion 360
Gallery B-Reps, we train our B-Rep Classification Network
over the 26 classes that have at least 3 examples compati-
ble with our network (for train, test, and validation); we use
stratified sampling to create training subsets that contain at
least one part from each category in each split. Since UV-
Net cannot be run on B-Reps that lack edges, we restricted
our test set only to models with edges; we also removed
2 classes that UV-Net could not distinguish since they dif-
fer only in part orientation (our technique can differentiate
these classes, so keeping them in the evaluation would both
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Figure 10. Comparison of our method to UV-Net for part clas-
sification on the FabWave dataset. The mean accuracy across 10
training runs is plotted with a bootstrapped 95% confidence inter-
val.

Figure 11. Shape reconstructions (right) from face embeddings
on the Fusion 360 segmentation test set compared to ground truth
(left). Each B-Rep face is given a unique color, which is consistent
between ground truth and reconstruction.

improve our accuracy and decrease UV-Net’s). Figure 10
shows the results. Our method slightly outperforms UV-
Net across training sizes and significantly outperforms SB-
GCN, and even achieves 100% accuracy at higher training
set sizes.

5.4. Rasterization Evaluation

Figure 11 shows a collection of part renderings to il-
lustrate qualitatively our reconstruction and classification
results. It shows a gallery of rasterization results on un-
seen test examples from the Fusion 360 Gallery segmen-
tation dataset. Reconstructions were created by sampling
a 100x100 (u,v) grid in the range [-0.1,1.1] for each face
to create a mesh for the supporting surface, then remov-



Task / Model Training Set Size / Accuracy

Fusion 360 Seg. 10 100 1000 10000 20000 23266

SVM 0.66 0.79 0.85 0.87 0.87 0.87
MLP 0.65 0.80 0.90 0.94 0.94 0.94
MP (Ours) 0.65 0.79 0.91 0.95 0.96 0.96

MFCAD 10 100 1000 10000 13940 –

SVM 0.40 0.51 0.56 0.57 0.57
MLP 0.36 0.60 0.86 0.93 0.93
MP (Ours) 0.35 0.66 0.96 0.99 0.99

Table 1. Segmentation ablations. Reported face segmentation ac-
curacy shows the mean of 10 runs at each dataset size with the train
set subset at different random seeds (each model sees the same 10
random subsets). Models were selected by best validation loss on
a random 20% validation split. Bold indicates the best accuracy at
each train size for each task.

ing mesh vertices outside the predicted clipping plane SDF.
Supporting surface reconstructions are highly accurate, as
are the clipping masks for typical shapes with a single
boundary. Complex interior and exterior boundaries of clip-
ping planes are sometimes predicted inaccurately.

5.5. Ablations

Self-Supervision Ablations. In addition to the network
described in Section 3, we also tried using a truncated SB-
GCN (only its upwards pass) as the encoder network, using
the same shape parameter input features. We evaluated both
explicit surface and SDF accuracy; our encoder outperforms
SB-GCN by 27% in the former metric and 31% in the latter.

Segmentation Ablations. We tried three types of face-
level prediction networks using our self-supervised face
embeddings: directly classifying faces from the embed-
ding using a linear support vector machine (SVM), using
a multi-layer perceptron (MLP), or using the message pass-
ing scheme described in Section 4 (MP) to test if neigh-
borhood context is necessary. Table 1 shows the results of
these experiments. All methods performed similar with lit-
tle training data, but with more data we observed up to 36%
improvement from SVM to MLP, and up to additional 10%
from MLP to MP. At very low training sizes, using an SVM
did outperform other methods, indicating that for certain
very-low data tasks it may be a better way to apply geomet-
rically self-supervised features. We chose to use message
passing in our comparisons because it performed the best
across a range of training set sizes.

Classification Ablations. We also tested adding message
passing layers prior to pooling for the classification net-
work, but found that this additional complexity did not yield
any improvement.

Further details about our ablations experiments and full
result tables are in our supplemental material.

5.6. Limitations and Future Work

Our work has three main limitations. The first is that
we currently only support geometry with a fixed number
of shape parameters (e.g. no construction geometry or B-
splines), allowing us to support 77% of the Fusion 360 Seg-
mentation dataset. The limitation is due to the choice to
use fixed-size vectors as our input feature encoding for sim-
plicity. It could be alleviated by using a sequence or tree
encoder to compute fixed-size embeddings for the generic
functional geometric expressions of each B-Rep topology.

The second limitation is that we self-supervise only on
local information. This means that we rely on additional
message passing layers in our task-specific decoders to
gather neighborhood features. Finally, we create encodings
only for faces, which limits the kinds of tasks we can learn.
Adding a second decoder and loss term to rasterize edges
could extend this work to edge-based tasks. We did not add
this complexity since there are currently no edge-specific
tasks in the literature to compare against.

Improving self-supervision accuracy will be a fruitful di-
rection for future work. The accuracy of downstream learn-
ing tasks is correlated with the accuracy of our model’s
rasterization (see supplemental). Thus, improvements in
rasterization performance should yield improvements in
classification performance in both few-shot and large data
regimes.

Improving rasterization performance could also unlock
future applications in reverse engineering. Operating our
self-supervision network as a rasterizer creates, in effect,
a differentiable CAD renderer, which could be used for
gradient-based optimization of B-Rep shape parameters.
A prototype shape fitting application (see supplemental)
showed promise on simple shapes, but struggles on more
complex shapes, which may overcome by improved rasteri-
zation performance.

6. Conclusion

In this work we learn a spatial embedding of B-Reps and
apply it to few-short learning on supervised tasks. We val-
idate that this approach is effective compared to prior work
on supervised learning. Our results show comparable re-
sults on large training sets and significantly better perfor-
mance on smaller sets. By experimenting over three dif-
ferent tasks and datasets, we posit that this method will be
widely applicable to a plethora of CAD applications. Be-
ing faster to train can enable many new applications in this
domain, particularly user-guided annotation for customized
predictions. Finally, our method enables a fully differential
embedding of B-Rep geometry compared to prior work that
required non-differentiable CAD kernels, paving the way
for exciting future work on CAD optimization and reverse
engineering.
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