Neural Progressive Meshes

YUN-CHUN CHEN, University of Toronto, Canada
VLADIMIR G. KIM, Adobe Research, USA
NOAM AIGERMAN, Adobe Research, USA

ALEC JACOBSON, Adobe Research, University of Toronto, Canada

Subdivision " \

Coarse mesh and

Ground truth
per-face features

Progressive features

Fig. 1. Neural Progressive Meshes. We present a framework that learns a progressive compressed representation of meshes for transmission purposes.
Given a high-resolution mesh in the database, the server trains a network that derives a compressed representation that can be transmitted to the client. The
client reconstructs the low-resolution mesh using a pre-trained subdivision decoder. The reconstruction quality can be further improved with additional data
transmitted progressively from the server to the client. The numbers shown in the corner of each example are the compression ratios.

The recent proliferation of 3D content that can be consumed on hand-held
devices necessitates efficient tools for transmitting large geometric data, e.g.,
3D meshes, over the Internet. Detailed high-resolution assets can pose a
challenge to storage as well as transmission bandwidth, and level-of-detail
techniques are often used to transmit an asset using an appropriate band-
width budget. It is especially desirable for these methods to transmit data
progressively, improving the quality of the geometry with more data. Our
key insight is that the geometric details of 3D meshes often exhibit simi-
lar local patterns even across different shapes, and thus can be effectively
represented with a shared learned generative space. We learn this space

Authors’ addresses: Yun-Chun Chen, University of Toronto, Canada, ycchen@cs.
toronto.edu; Vladimir G. Kim, Adobe Research, USA, vokim@adobe.com; Noam Aiger-
man, Adobe Research, USA, aigerman@adobe.com; Alec Jacobson, Adobe Research,
University of Toronto, Canada, jacobson@cs.toronto.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

0730-0301/2023/5-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

using a subdivision-based encoder-decoder architecture trained in advance
on a large collection of surfaces. We further observe that additional residual
features can be transmitted progressively between intermediate levels of
subdivision that enable the client to control the tradeoff between bandwidth
cost and quality of reconstruction, providing a neural progressive mesh repre-
sentation. We evaluate our method on a diverse set of complex 3D shapes
and demonstrate that it outperforms baselines in terms of compression ratio
and reconstruction quality.

ACM Reference Format:

Yun-Chun Chen, Vladimir G. Kim, Noam Aigerman, and Alec Jacobson. 2023.
Neural Progressive Meshes. ACM Trans. Graph. 1, 1 (May 2023), 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

We propose a framework for learning a progressive compressed
representation of meshes. Given a high-resolution mesh, our goal is
to derive a compressed representation that can be transmitted to a
client using a small bandwidth budget. The progressive nature of
the compression entails the client can immediately reconstruct a
meaningful mesh with lower reconstruction quality, and the server

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2+ Yun-Chun Chen, Vladimir G. Kim, Noam Aigerman, and Alec Jacobson

can further progressively transmit additional data to improve the
reconstruction quality while the asset is being used.

The need for such progressive compression techniques is consis-
tently rising, following the rise in the need to transmit detailed 3D
meshes from a centralized server repository to a client. Our method
is especially suitable for virtual and augmented reality applications
on mobile devices, which require selective transmissions of 3D con-
tent based on its visibility and available bandwidth. It additionally
enables the client to stop decompression at a desired resolution.

Mesh decimation and level-of-detail (LoD) techniques are com-
monly used to reduce the size of a 3D asset either for rendering or
transmission efficiency purposes [Garland and Heckbert 1997; Le-
scoat et al. 2020]. In addition to geometry simplification, remeshing
can be used to optimize the size of a 3D asset [Surazhsky and Gots-
man 2003; Szymczak et al. 2002]. Mesh simplification is a greedy
process, and thus learning-based techniques have been proposed
to devise a more efficient simplification approach [Potamias et al.
2022]. Most decimation techniques provide a single asset with a
desired triangle budget and do not provide a way to progressively
improve the quality of the asset. Progressive representations have
been proposed to address this use case [Hoppe 1996], enabling incre-
mental transmission of data to gradually improve the quality of the
asset on the client side. All of these methods, however, inevitably
lose details as they reduce the polygon count, approximating com-
plex geometric details with planes. Surface subdivision [Loop 1987;
Zorin et al. 1996] techniques could be used on the client side to
increase the resolution of the transmitted low-resolution mesh, and
the coarse mesh can be optimized specifically for a particular sub-
division scheme [Hoppe et al. 1994]. These subdivision schemes,
however, use simple hand-crafted filters, and thus subdivided geom-
etry lacks any intricate original details. In this work, we propose to
learn the space of geometric details by encoding them in progressive
per-face features, which could be used to guide a neural subdivision
process, enabling it to reconstruct complex geometry such as the
eye or the lips of a character as shown in Figure 1.

We follow recent advances in subdivision-based learning tech-
niques for mesh analysis [Hanocka et al. 2019; Hu et al. 2022] and
upsampling [Hertz et al. 2020; Liu et al. 2020]. At inference time,
given an input mesh, the server first uses TetWild [Hu et al. 2018]
to preprocess it and then uses a subdivision-based encoder adapted
from SubdivNet [Hu et al. 2022] to map geometric details of the
original mesh to high-dimensional per-face features of a sequence of
decimated meshes. The mesh at the lowest (coarsest) level of resolu-
tion can then be transmitted to the client, which uses a subdivision-
based decoder adapted from Neural Subdivision [Liu et al. 2020] to
reconstruct a high-resolution mesh. The per-face features can be
additionally transmitted to the client, and our subdivision decoder
is trained to use them to further improve the quality of the recon-
struction. We train the encoder and the decoder jointly on a large
and heterogeneous collection of shapes using a reconstruction loss.
To allow progressive refinement, we also introduce a sparsity loss
on the per-face features, favoring the irrelevant features to be zero.

We evaluate our network on the Thingil0K [Zhou and Jacobson
2016] dataset, split into the training, validation, and test sets. We
create a benchmark, evaluating the reconstruction quality given a

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

prescribed transmission limit. We demonstrate that our method out-
performs various baselines that use mesh decimation, subdivision,
or progressive representations.

2 RELATED WORK

Mesh compression and simplification. Lossless mesh compression
techniques often use entropy encoding for geometry, connectiv-
ity, and surface attributes [Alliez and Desbrun 2001; Deering 1995;
Rossignac 1999; Szymczak et al. 2001; Taubin and Rossignac 1998;
Touma and Gotsman 1998]. These methods perfectly preserve the
original details and thus are limited in their ability to reduce size. Ge-
ometry simplification techniques aim to reduce the polygon count
while retaining the geometric features of the original mesh as much
as possible [Garland and Heckbert 1997; Lescoat et al. 2020; Surazh-
sky and Gotsman 2003; Szymczak et al. 2002]. Neural mesh simplifi-
cation techniques [Potamias et al. 2022] have also been proposed
to address the greedy nature of classical techniques. All of these
methods reduce the polygon count at the expense of losing orig-
inal details. Any of these methods could be used to produce the
initial coarse mesh in our framework. In this paper, we opted for
QSlim [Garland and Heckbert 1997] due to its simplicity and since
it preserves the manifoldness and the watertightness of the input.

Progressive mesh representations have also been proposed [Hoppe
1996] to transmit details incrementally, but this technique does not
aim to compress data, and thus can only reconstruct the original
high-fidelity shape by transmitting all geometric information.

Surface upsampling. Mesh subdivision is a common tool to refine
coarse meshes [Catmull and Clark 1978; Loop 1987; Zorin et al. 1996].
However, these methods employ hard-coded priors and usually re-
cover (piecewise) smooth shapes, losing non-trivial details. One can
optimize the coarse shape with respect to a particular subdivision
scheme to maximize the reconstruction quality [Hoppe et al. 1994],
but it has limited capabilities since the scheme itself stays fixed.

Neural networks can be used to significantly expand the space
of geometric details created with a subdivision scheme [Hertz et al.
2020; Liu et al. 2020]. We build upon the Neural Subdivision [Liu et al.
2020] framework. Unlike Neural Subdivision, which encodes the
local geometric details into the weights of the neural network, our
method takes advantage of a subdivision-based encoder that encodes
the local geometric details into per-face features. We introduce skip
connections [Ronneberger et al. 2015] between the same level in
the encoder and the decoder to improve the reconstruction quality
and allow for progressive learnable features as additional input.

Morreale et al. [2022] also propose to represent a surface via
two neural networks: one is a generic multi-layer perception (MLP)
network that reconstructs coarse surfaces and the other is a detailiza-
tion convolutional architecture. Unlike our method, this technique
requires training two separate neural networks for each shape in-
stance and thus requires transmitting the entire neural network for
each asset, preventing it from effectively compressing details shared
across different shapes and increasing computational costs.



Neural Progressive Meshes « 3

Mesh M1t

Input mesh M

sparsity (Ievel 2) i

€U

[‘corr + aLjacobian (level 3)

Lcorr + aLjacobian (level 2)

fl o —: B fO

Mesh M°

Lcorr + a[’jacobian (level 1)

Fig. 2. Overview of Neural Progressive Meshes. Our network consists of an encoder E and a decoder D. Given an input mesh M to be transmitted, we first
apply a remeshing scheme to obtain a sequence of LoD meshes ML ... M. The encoder learns per-face features that encode the local geometric details of
each LoD mesh. The decoder learns to reconstruct a high-resolution mesh based on the transmitted coarsest mesh M°. The reconstruction quality can be
iteratively improved with features being progressively transmitted from the encoder to the decoder.

Geometric deep learning. A large number of neural shape repre-
sentations have recently been developed. Unsupervised represen-
tation learning techniques often follow an encoder-decoder archi-
tecture [Baldi 2012; Bengio et al. 2009], where the encoder network
maps shapes to a high-dimensional feature code and the decoder
reconstructs the original data. Existing shape encoders include 2D
CNNs over projections of shapes [McCormac et al. 2017; Su et al.
2015], 3D CNNs over voxel grids [Tran et al. 2015], point-based archi-
tectures [Qi et al. 2017a,b], surface-based techniques [Mitchel et al.
2021], mesh-based approaches that learn directly over the discrete
mesh structure [Hanocka et al. 2019]. SubdivNet [Hu et al. 2022] is
a mesh-based approach that operates on meshes with Loop [Loop
1987] subdivision sequence connectivity. The goal is to learn per-
face features for dense prediction tasks on mesh surfaces. We build
upon SubdivNet and develop a subdivision-based encoder. Our goal
is different from SubdivNet in that we aim to encode the local geo-
metric details into per-face features and use them to guide the
subdivision process in the decoder.

One can also directly optimize for shape codes with respect
to some reconstruction objective without using an encoder [Park
et al. 2019]. Existing decoders generate shapes by folding 2D at-
lases into 3D surfaces [Groueix et al. 2018b], deforming template
meshes [Groueix et al. 2018a], or predicting occupancies [Mescheder
et al. 2019] or SDFs [Chen and Zhang 2019; Park et al. 2019].

While one can view an encoder-decoder architecture as an ex-
treme version of neural compression, where the entire shape is
compressed to a single feature vector. Existing decoders usually do
not perform well at reconstructing high-resolution mesh details in
comparison to surface upsampling techniques. By transmitting an
optimized low-resolution mesh, we can also guarantee the preser-
vation of the original topology and the watertightness of the input.

3 METHOD
3.1 Overview

Given a triangle mesh M = (V, F) with vertex positions V and faces
F, our goal is to encode it into a data stream dy__; which could be
progressively transmitted to the client, where the client should be
able to reconstruct a low-resolution shape from initial transmission
dp and then iteratively improve it with subsequent transmissions
di...+ for some bandwidth and time budget t.

We first obtain a sequence of LoD meshes M° ... ML, where
M! = (VL F') and MO is the coarsest mesh with a fixed number
of faces. The triangulation of each subsequent mesh F! ... FL is de-
fined by a simple subdivision rule iteratively applied to FO. We also
preserve correspondences during the simplification step and use
this mapping to define vertex positions at each level of subdivision
vO...VL. When using our progressive representation, the server
first transmits the coarsest mesh dy = M? to the client. The client
uses the same subdivision scheme to reconstruct the sequence of
meshes M! = (V! F!), where i = 1...L (note that we apply the
same subdivision rule on the client side, and thus the triangulation
is exactly the same). We assume that the mesh at the highest level
of subdivision M” is sufficiently close to the input for all practical
purposes, and thus reduce our problem to designing a method that
can efficiently compress vertex coordinates VX on the server side
and enable reconstructing the coordinates V2 on the client side.

To take advantage of the shared structures in local mesh geom-
etry, we use an encoder-decoder approach, where we first encode
geometric details as per-face features at each level i: f*, and then
the decoder uses the features to reconstruct the mesh at the high-
est level of detail. Our encoder E directly leverages LoD meshes by

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.



4« Yun-Chun Chen, Vladimir G. Kim, Noam Aigerman, and Alec Jacobson

learning filters that map features and vertex coordinates from higher-
resolution to lower-resolution level: E : [V, fi] — [ViT1 fi-1].
Our decoder D, in a similar manner, maps from lower-resolution
to higher-resolution level: D : [V, fi] — [V, f*1]. To speed up
training and improve the quality of learned features, we connect
corresponding faces at the same level of detail with skip connections,
akin to U-Net architectures for images [Ronneberger et al. 2015].
We train our network so that the decoder can still reconstruct a
plausible shape via the learned subdivision process even before all
features f' are transmitted. Specifically, to facilitate compression,
we introduce a feature sparsity loss, which aims to set per-face fea-
tures to 0 if they do not aid in reconstruction. In addition, we also
have classical reconstruction losses based on vertex coordinates and
their differential properties. See Figure 2 for an illustration of our
network architecture and training losses.

At inference time, after the initial coarse mesh M is transmitted
to the client, the decoder reconstructs the high-resolution mesh by
running the learned subdivision process with per-face features f*
set to 0. Our subsequent transmissions d;__; simply assign non-zero
features to some selected faces, enabling us to progressively improve
the quality of the reconstructed shape. Due to the sparsity loss, we
can simply sort the features by magnitude.

3.2 Neural Progressive Meshes

In this subsection, we discuss our neural progressive representation,
including preprocessing and the encoder and decoder architectures.

LoD preprocessing. To derive our LoD M .. .ME representation
used in the encoder, we first decimate the input mesh M via QS-
lim [Garland and Heckbert 1997] to obtain a coarse mesh M° with
|FO| = 400 faces. The target number of faces for simplification is
picked to yield sufficiently coarse meshes to facilitate compression
but also retain enough topological details for subdivision. To subdi-
vide the coarse mesh into higher-resolution meshes, we first split
each edge at the midpoint, subdividing each triangle into 4. This
gives us the triangulations F! ... FL, where |Fi| = 4|F'~1|. To get
vertex coordinates at the subdivision levels, we use successive self-
parameterization [Liu et al. 2020], which allows us to map each point
on each mesh M to the original mesh M, and we use that coordinate
for all vertices: V1 ... VL. We set L = 3 for all experiments, which
is selected to give us enough triangle budget to reconstruct shapes
in our dataset. We sometimes refer to this step as remeshing, as
ML could be viewed as a remeshed version of M, which has similar
geometry but a different triangulation.

Encoder. Our encoder E operates on the sequence of LoD meshes:
ME, ML= M, where all triangles in a high-resolution mesh can
be grouped into groups of four and mapped to a single triangle on
the next level of resolution based on the LoD scheme. We define
convolution and pooling operators based on this mapping following
SubdivNet [Hu et al. 2022]. The input per-face features at the highest
level in the encoder are 13-dimensional (i.e., rﬁesh € R13), composed
of a 7-dimensional shape feature (face area, three interior angles, and
the inner product between the face normal and the vertex normals)
and a 6-dimensional pose feature (face center coordinate and face
normal). Unlike SubdivNet, where the input per-face features at

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

XN
W7
-

avg pool

XN
W7
o

@ﬁ S

Fig. 3. Vertex position prediction. The decoder takes as input the features
of the two adjacent faces and predicts the displacement for the midpoint.

the subsequent levels are just the output per-face features from
the previous level, in our encoder, the input per-face features at
the subsequent levels are a concatenation of the output per-face
features from the previous level (i.e., f*) and the 13-dimensional per-
face features computed based on mesh M (i.e., I; esh)- This design
allows us to encode the local geometric details of each LoD mesh
into the feature encoding process. Our encoder maps the input per-
face features at level i to learned per-face features at the subsequent
level (i, level i —1): fi71 e R, V1 <i<L.

Decoder. Our decoder D operates on the mesh transmitted at the
coarsest level M° and can optionally leverage learned per-face fea-
tures f%. We first compute 13-dimensional shape and pose features
(as described in the previous paragraph) of the coarse mesh M? to de-
rive the per-face features fxgesh‘ We then concatenate features fI?leSh
with learned per-face features f°. If features f° are not transmitted,
we simply set f0 = 0 for all faces. We treat the concatenated features
as the input to the decoder. Instead of using half-flap representa-
tions as Neural Subdivision does, we adapt the Neural Subdivision
architecture and develop a subdivision-based decoder that uses the
features of the two adjacent triangles to predict vertex positions at
the next level of subdivision \7i, i=1...L,asshown in Figure 3. Our
decoder maps the input per-face features at level i and optionally
the learned per-face features transmitted from the same level in
the encoder to per-face features at the next subdivision level in the
decoder (ie., level i+ 1): f*1 e R8 VO <i<L-1.

3.3 Network Training

We train our encoder-decoder network end-to-end using recon-
struction and sparsity losses. The former favors higher quality of
reconstruction and the latter favors sparser features and thus com-
pression of the signal.

Reconstruction losses. Our reconstruction loss is composed of two
terms. First, the £, distance between vertex positions predicted by
the decoder and true LoD positions:

L
1~ .
L = —||V! = V5. 1
corr Z |V’| || ||2 (1)
i=1

The second term is a loss in the gradient domain, measuring the
similarity of Jacobians, which helps match differential properties of
true and predicted LoD surfaces, such as normals and curvature:

L |F?

|
1 .
-Ljacobian = Z |Fi| Z ”]jl =1I||2, (2)
Jj=1

i=1



Neural Progressive Meshes « 5

44.94 / 17.42°
QSlim

dpm (X10_4) / dnormal
Ground truth

where ]} is the Jacobian of the deformation that maps the jth triangle

of the true LoD mesh M’ to its predicted counterpart M?, and I is
the identity matrix.

Sparsity loss. To avoid transmitting features that encode redun-
dant information in regions whose geometry could be inferred by
the decoder without any aid, we introduce a sparsity loss:

L-1

1 .
Lsparsity = Z ﬁ”fl”l 3)
i=0

After network training, we sort the features based on the magnitude
and transmit them progressively from the encoder to the decoder.

Total loss. We now define total training loss as a sum of weighted
terms with @ = 1 and § = 0.1 for all experiments:

L= Lo+ aLjacobian + ,B-Esparsity~ (4)

Input preconditions. Our approach is not constrained to water-
tight, non-self-intersecting, near-delaunay triangulated meshes, and
can be trained with such data by adding a preprocessing step. Given
an input mesh, we use TetWild [Hu et al. 2018] to preprocess it.

4 EXPERIMENTS
4.1 Experimental Setup

Dataset. We evaluate our method on Thingi10K [Zhou and Jacob-
son 2016], a dataset of diverse models with interesting geometric
and topological features. We start with the preprocessed watertight
meshes provided by Hu et al. [2018] and filter out models that have
more than 1 connected component or are not edge manifold, leaving
us with 6,418 meshes. We sample 1,000 meshes and split them into
training (80%), validation (10%), and test (10%) sets for experiments.

Evaluation metrics. We adopt the mean point-to-mesh distance
dpm and the average normal error dporma) to measure the similarity
of the reconstructed mesh to the ground truth. The mean point-
to-mesh distance first uniformly samples 1 million points on the
surface of the final subdivided mesh M~. Then it computes the

28.56 / 15.78°
SubdivFit

Fig. 4. Visual comparisons with decimation and subdivision methods on Thingi10K. The compression ratio (CR) is 61.39 for all methods.

5.32/ 8.62°

Neural Subdivision Ours

17.09 / 13.69°

Table 1. Comparisons with baseline methods on Thingi10K. All meth-
ods have the same compression ratio (CR = 61.39). Our method performs
the best on both metrics that measure the quality of reconstruction.

Method dpm (x107%) | dnormal |
QSlim 30.11 13.21°
Loop 68.47 14.98°
Butterfly 40.55 16.99°
SubdivFit 27.33 15.41°
Neural Subdivision 19.03 11.21°
Ours 4.12 7.19°

average distance between each sampled point and the ground-truth
mesh M. The normal error computes the average angle (in degrees)
between the normal of the sampled point on mesh M’ and the
normal of the projected point on the ground-truth mesh M.

We use the compression ratio (CR) to evaluate the effectiveness of
different methods in transmitting LoDs. Since we did not want our
metric to be skewed by various additional potential post-processes:
generic compression algorithms, changing floating-point resolution,
and topology-specific compression, we decided not to account for
the transmission of topological data. However, in practice, this puts
our method at a disadvantage, since we only need to transmit the
topology for the coarse mesh, where all other triangulations are
defined by subdivision. For all methods, we measure CR as:

_ 3|VI
3V + X peqdim(f)’
where dim( f) is the size of all transmitted features f € 7.

Implementation details. Each level in our encoder is composed of
a mesh convolution [Hu et al. 2022], a batch normalization [loffe
and Szegedy 2015], a ReLU [Nair and Hinton 2010], and an average
pooling [Hu et al. 2022]. Each level in our decoder is composed of
two modules, one for predicting vertex displacements and the other
for feature learning. The vertex displacement prediction module is

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.



6 + Yun-Chun Chen, Vladimir G. Kim, Noam Aigerman, and Alec Jacobson

,

CR/ dpm (X10_4) / dnormal
Ground truth

1.15/2.80 / 10.15°
ACORN

1.15/2.91/8.79°
NGLOD NCS Ours

1.15/2.52/4.73° 39.32/2.74 / 8.81°

Fig. 5. Visual comparisons with neural overfitting methods. Our result is comparable to neural overfitting methods in dpm and dnormal While having a

much higher compression ratio.

a single fully connected layer. The feature learning module consists
of a bilinear upsampling [Hu et al. 2022], a mesh convolution [Hu
et al. 2022], a batch normalization, and a ReLU.

We train our network using the ADAM [Kingma and Ba 2014]
optimizer in PyTorch [Paszke et al. 2019]. The initial learning rate
is set to 1 X 1073, and the learning rate decay is set to 1 X 107%, We
scale each mesh in the dataset to fit a unit cube. We then employ
two data augmentation strategies. First, we randomly decimate each
mesh to 10 different coarse meshes. Second, we randomly rotate
the meshes at all levels of subdivision by a random rotation (in 90°
increments) around each of the three axes.

4.2 Mesh Compression

We evaluate our method and several baselines for the mesh com-
pression task using compression and reconstruction metrics. Since
all methods will have a tradeoff between the compression ratio and
the reconstruction quality, for all comparisons presented in this
subsection we set the parameters of each method to reach the same
compression ratio as ours, and only compare the reconstruction
quality. We show quantitative results in Table 1 and qualitative re-
sults in Figures 4 and 9 for our method and baselines. See Section 3
in the supplemental material for more results of our method. We
next detail the choice of our baselines.

We first compare to a mesh decimation approach, QSlim [Garland
and Heckbert 1997], which reduces the mesh size by greedily col-
lapsing edges with the lowest quadric error. This method is expected
to lose details since it does not have an upsampling step. One can
run a classical subdivision scheme (e.g., Loop [Loop 1987] or But-
terfly [Zorin et al. 1996]). However, as observed in Table 1, it only
worsens the performance, since these methods are not aware of the
priors used by QSlim. One can specifically optimize the simplified
mesh based on the subdivision method, e.g., SubdivFit [Hoppe et al.
1994], which improves the reconstruction accuracy. We find the
learnable subdivision method (Neural Subdivision [Liu et al. 2020])
further improves the accuracy. Note that our method yields the
highest accuracy at the same level of compression since it learns
surface-specific features across a collection of shapes and can adap-
tively transmit features only in regions that need the most details.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

4.3 Comparison to Mesh Compression by Neural
Overfitting

A few recent techniques have been proposed for compressing data
by overfitting neural representations to high-resolution meshes,
e.g., NCS [Morreale et al. 2022], ACORN [Martel et al. 2021], and
NGLOD [Takikawa et al. 2021]. These methods require transmitting
all network weights for each mesh, do not learn a space of local de-
tails, and have been overfitted to very high-resolution meshes. Since
these methods would not be very effective at our lower-resolution
meshes, we run our method on their data and show results in Fig-
ure 5. The compression ratio for these methods is defined as the
ratio between the ground truth mesh file size and the network file
size. Even though our method was trained on much lower resolution
data, it achieves a comparable quality of reconstruction (measured
by dpm and dyrmal) compared to neural overfitting baselines while
offering a much higher compression ratio.

4.4 Progressive Meshes

We now demonstrate progressive transmission, a key feature of our
method. Note that all mesh compression techniques we discussed so
far can only transmit a single shape with a particular bandwidth bud-
get. To upgrade the resolution of the shape, the entire mesh needs
to be re-transmitted at a higher resolution, potentially transmitting
redundant information multiple times.

To evaluate the effectiveness of progressively transmitting fea-
tures, we conduct an analysis by varying the number of features
transmitted from the encoder to the decoder and look at the quality
of the resulting reconstructions (see Table 2, Figures 6 and 11). See
Section 2 in the supplemental material for more visual results. Note
the gradual improvement in the quality of the reconstructed local
details as more features are being transmitted.

We further compare our method to baselines for variable com-
pression ratio in Figure 7, where the x-axis shows CR and the y-axis
shows point-to-mesh distance. As noted, previously discussed mesh
simplification baselines (QSlim) and different subdivision schemes
applied to QSlim (Loop, Butterfly, Neural Subdivision) do not allow
transmitting incremental data to progressively improve the subdi-
vision quality. Thus, these methods are not directly comparable,
and we render them as scatter points for context. It is worth noting,



Neural Progressive Meshes « 7

CR/ dpm (X107 / dyormal
Ground truth

64.73 / 14.87 / 10.33°

Ours w/o features

17.78 / 11.48 / 6.94°

Ours + 40 features

10.31/5.37/5.31°

Ours + 400 features

Fig. 6. Progressive features. Our results can be progressively improved if additional features are transmitted.

Table 2. Ablation study on progressive features.

Method dpm (x107%) | dnormal |
Ours w/o features 14.56 12.36°
Ours + 40 features 6.81 9.20°
Ours + 400 features 4.12 7.19°

nevertheless, that for any compression ratio, our method provides a
higher reconstruction quality than these alternatives.

Progressive Meshes [Hoppe 1996] is the pioneering method that
inspired our work and allowed us to use incremental features to pro-
gressively recover the details of a mesh. Since Progressive Meshes
is a lossless method, it outperforms our approach for a smaller CR.
However, we observe that the gap widens for CR > 10, suggesting
that our method is especially effective when an asset needs to be
significantly reduced in size. See Figure 10 for a visual comparison.

4.5 Levels of Detail

Our method design provides flexibility to the user on the client side
to determine the resolution of the subdivided mesh. This choice
does not affect the compression ratio but can be used to optimize
the use of computational resources (e.g., displaying lower-level of
subdivision for far-away assets). We conduct an ablation study that
evaluates the quality of the subdivided mesh at each subdivision
level (see Table 3 and Figure 8). As expected, the quality increases
with each subdivision level, but returns are diminishing, even though
the number of triangles increases exponentially by a factor of 4.

4.6 Limitations and Failure Cases

Our method fails when applied to a shape with complex topological
details and intricate thin features. See Section 4 in the supplemental

Ay, (X107%)
40
Loop ®
35 — Butterfly ®
QSlim ®
30 ) Neural Subdivision ®
[ ]
25 o
Progressive Meshes
20 e
Ours
15
10
5
0 10 20 30 40

Compression ratio

Fig. 7. Compression ratio vs. point-to-mesh distance curve.

material for an example. Although not suitable for lossless compres-
sion, our method provides a superior lossy compression for a wide
section of the size-accuracy spectrum.

4.7 Runtime

We train and test the network on an Intel(R) Core(TM) i7-12700K
CPU machine with one NVIDIA A40 GPU. The network training
takes around 2 days. At test time, the server needs 4.84s to remesh a
100,000-face mesh to 400 faces (CPU-only), and the encoder forward
pass takes 4.02s to predict per-face features on the GPU. It takes
4.58s for the client to subdivide a 400-face mesh to 25,600 faces (i.e.,
3 subdivision levels) on the GPU. Our method can also run on the
CPU. In the CPU-only case, the encoder forward pass takes 7.42s to

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.



8 + Yun-Chun Chen, Vladimir G. Kim, Noam Aigerman, and Alec Jacobson

-

CR/ dpm (X10_4) / dnormal
Ground truth

22.99 / 24.85 / 6.60°

Coarse mesh

4.40 / 8.60 / 4.84°
Ours (level 1)

3.66 / 1.82 / 2.94°
Ours (level 3)

4.00 / 6.15 / 4.64°
Ours (level 2)

Fig. 8. Levels of detail. Our decoder is able to subdivide a coarse mesh to different LoD meshes, providing the user with the flexibility to determine the

resolution of the subdivided mesh.

Table 3. Ablation study on levels of detail.

Method # triangles dpm (x107%) | G
Ours level 1 1,600 12.47 11.23°
Ours level 2 6,400 4.36 8.66°
Ours level 3 25,600 4.12 7.19°

predict per-face features, and the decoder forward pass takes 6.93s
to subdivide a 400-face mesh to 25,600 faces.

5 CONCLUSIONS

We propose Neural Progressive Meshes, a novel representation that
allows us to learn the space of surface details and efficiently com-
press them into per-face features. These features can be transmitted
progressively, enabling our method to iteratively improve the quality
of the reconstructed mesh as more data is transmitted. We demon-
strate that our method is especially effective when only a small
fraction of the original shape can be transmitted and outperforms
other compression techniques, mesh simplification and subdivision
approaches, and progressive mesh representations.

ACKNOWLEDGMENTS

This project is funded in part by NSERC Discovery (RGPIN-2022-04680),

the Ontario Early Research Award program, the Canada Research
Chairs Program, a Sloan Research Fellowship, the DSI Catalyst Grant
program and gifts by Adobe Systems. We thank Hsueh-Ti Derek
Liu for help with the Neural Subdivision code and Silvia Sellan,
Abhishek Madan and Selena Ling for help with making figures.

REFERENCES

Pierre Alliez and Mathieu Desbrun. 2001. Valence-driven connectivity encoding for 3D
meshes. In Computer graphics forum.

Pierre Baldi. 2012. Autoencoders, unsupervised learning, and deep architectures. In
ICMLW.

Yoshua Bengio et al. 2009. Learning deep architectures for AL. Foundations and trends
in Machine Learning (2009).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.

Edwin Catmull and James Clark. 1978. Recursively generated B-spline surfaces on
arbitrary topological meshes. Computer-aided design (1978).

Zhigin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape
modeling. In CVPR.

Michael Deering. 1995. Geometry compression. In Conference on Computer graphics
and interactive techniques.

Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error
metrics. In Computer graphics and interactive techniques.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu
Aubry. 2018a. 3d-coded: 3d correspondences by deep deformation. In ECCV.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu
Aubry. 2018b. A papier-méché approach to learning 3d surface generation. In CVPR.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. Meshcnn: a network with an edge. ACM TOG (2019).

Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. 2020. Deep Geometric
Texture Synthesis. ACM TOG (2020).

Hugues Hoppe. 1996. Progressive meshes. In Conference on Computer graphics and
interactive techniques.

Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John Mc-
Donald, Jean Schweitzer, and Werner Stuetzle. 1994. Piecewise smooth surface
reconstruction. In Annual conference on Computer graphics and interactive tech-
niques.

Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang
Mu, and Ralph R Martin. 2022. Subdivision-based mesh convolution networks. TOG
(2022).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral meshing in the wild. ACM TOG (2018).

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
In ICLR.

Thibault Lescoat, Hsueh-Ti Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy
Boubekeur, and Maks Ovsjanikov. 2020. Spectral mesh simplification. In Computer
Graphics Forum.

Hsueh-Ti Derek Liu, Vladimir G Kim, Siddhartha Chaudhuri, Noam Aigerman, and
Alec Jacobson. 2020. Neural subdivision. ACM TOG (2020).

Charles Loop. 1987. Smooth subdivision surfaces based on triangles. Master’s thesis,
University of Utah, Department of Mathematics (1987).

Julien NP Martel, David B Lindell, Connor Z Lin, Eric R Chan, Marco Monteiro, and
Gordon Wetzstein. 2021. Acorn: Adaptive coordinate networks for neural scene
representation. ACM TOG (2021).

John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. 2017. Se-
manticfusion: Dense 3d semantic mapping with convolutional neural networks. In
ICRA.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. Occupancy networks: Learning 3d reconstruction in function space.
In CVPR.

Thomas W Mitchel, Vladimir G Kim, and Michael Kazhdan. 2021. Field convolutions
for surface CNNs. In ICCV.



Luca Morreale, Noam Aigerman, Paul Guerrero, Vladimir G. Kim, and Niloy Mitra.
2022. Neural Convolutional Surfaces. In CVPR.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In ICML.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. Deepsdf: Learning continuous signed distance functions for shape
representation. In CVPR.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
2019. PyTorch: An imperative style, high-performance deep learning library. In
NeurlIPS.

Rolandos Alexandros Potamias, Stylianos Ploumpis, and Stefanos Zafeiriou. 2022. Neu-
ral mesh simplification. In CVPR.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In CVPR.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In NeurIPS.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In MICCAL

Jarek Rossignac. 1999. Edgebreaker: Connectivity compression for triangle meshes.
TVCG (1999).

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-
view convolutional neural networks for 3d shape recognition. In ICCV.

Vitaly Surazhsky and Craig Gotsman. 2003. Explicit surface remeshing. In SGP.

Andrzej Szymczak, Davis King, and Jarek Rossignac. 2001. An Edgebreaker-based
efficient compression scheme for regular meshes. Computational Geometry (2001).

Andrzej Szymczak, Jarek Rossignac, and Davis King. 2002. Piecewise regular meshes:
Construction and compression. Graphical Models (2002).

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
geometric level of detail: Real-time rendering with implicit 3D shapes. In CVPR.

Gabriel Taubin and Jarek Rossignac. 1998. Geometric compression through topological
surgery. ACM TOG (1998).

Costa Touma and Craig Gotsman. 1998. Triangle mesh compression. In Proceedings-
Graphics Interface.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. 2015.
Learning spatiotemporal features with 3d convolutional networks. In ICCV.

Qingnan Zhou and Alec Jacobson. 2016. Thingil0k: A dataset of 10,000 3d-printing
models. In SGP.

Denis Zorin, Peter Schréder, and Wim Sweldens. 1996. Interpolating subdivision for
meshes with arbitrary topology. In Computer graphics and interactive techniques.

Neural Progressive Meshes « 9

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.



10+ Yun-Chun Chen, Vladimir G. Kim, Noam Aigerman, and Alec Jacobson

()~ =58

CR =19.90 36.06 / 12.75° 103.51 / 19.66° 60.03 / 23.56° 24.84/18.45° 17.06 / 14.90° 5.63/9.96°

CR =33.75 27.80/17.19° 56.15 / 21.65° 34.64 / 19.89° 26.18 / 23.61° 19.87 / 18.22° 474 /10.10°
Ground truth QSlim Loop Butterfly SubdivFit Neural Subdiv Ours

Fig. 9. Visual comparisons with decimation and subdivision methods on Thingi10K. We report the dpm (X 107™%) / dpormal results under each method.
The compression ratio (CR) is the same for all methods on the same shape and is reported under the ground-truth example.

4 P

CR/ dpm (x10™%) / dyormal 39.83 /20.28 / 13.37° 7.18/7.28 / 7.40° 3.17/0.41/0.18°

Ground truth Progressive Meshes Progressive Meshes Progressive Meshes

2

. . Pul 2
39.83/30.75/ 13.86° 39.83 /15.59 / 11.54° 7.18/7.70 / 7.66° 3.17 / 4.89 / 8.15°

QSlim Ours w/o features Ours + 40 features Ours + 400 features

Fig. 10. Comparison to Progressive Meshes.



Neural Progressive Meshes « 11

CR / dpm (x10™%) / dyormal 11.17 /12.11/ 14.29° 7.28 /3.16 / 5.60° 1.76 / 0.56 / 2.71°

CR / dpm (x10™%) / dyormal 42.02/8.24/ 7.40° 27.50 / 6.57 / 5.06° 6.69/1.44/3.98°

Ground truth Ours w/o features Ours + 40 features Ours + 400 features

Fig. 11. Progressive features. We show more examples where transmitting more features leads to better quantitative and qualitative results.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2023.



	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 Neural Progressive Meshes
	3.3 Network Training

	4 Experiments
	4.1 Experimental Setup
	4.2 Mesh Compression
	4.3 Comparison to Mesh Compression by Neural Overfitting
	4.4 Progressive Meshes
	4.5 Levels of Detail
	4.6 Limitations and Failure Cases
	4.7 Runtime

	5 Conclusions
	References

