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Fig. 1. TextDeformer deforms a source shape into various text-specified targets. The mesh colors visualize the smoothness of the mappings.

We present a technique for automatically producing a deformation of an
input triangle mesh, guided solely by a text prompt. Our framework is capable
of deformations that produce both large, low-frequency shape changes,
and small high-frequency details. Our framework relies on differentiable
rendering to connect geometry to powerful pre-trained image encoders, such
as CLIP and DINO. Notably, updating mesh geometry by taking gradient
steps through differentiable rendering is notoriously challenging, commonly
resulting in deformed meshes with significant artifacts. These difficulties
are amplified by noisy and inconsistent gradients from CLIP. To overcome
this limitation, we opt to represent our mesh deformation through Jacobians,
which updates deformations in a global, smooth manner (rather than locally-
sub-optimal steps). Our key observation is that Jacobians are a representation
that favors smoother, large deformations, leading to a global relation between
vertices and pixels, and avoiding localized noisy gradients. Additionally, to
ensure the resulting shape is coherent from all 3D viewpoints, we encourage
the deep features computed on the 2D encoding of the rendering to be
consistent for a given vertex from all viewpoints. We demonstrate that our
method is capable of smoothly-deforming a wide variety of source mesh
and target text prompts, achieving both large modifications to, e.g., body
proportions of animals, as well as adding fine semantic details, such as shoe
laces on an army boot and fine details of a face.

1 INTRODUCTION

This paper proposes a method to deform 3D meshes into other

shapes through text guidance. Deforming meshes is a highly-researched

problem in computer graphics and geometry processing, with appli-
cations in content creation [Gal et al. 2009], character posing [Jacob-
son 2013], and morphing [Kraevoy and Sheffer 2004]. Most existing
techniques provide a user with the ability to control a deformation
through control handles [Jakab et al. 2020; Shechter et al. 2022]
which expose a space of coarse, low-frequency deformations. Such
deformations are often referred to as detail-preserving. However, 3D
modeling often also requires incorporating geometric details, where
an artist needs to meticulously add details in a laborious process.
In this work, we aim to automate the entire deformation process,
in order to automatically deform the mesh from its initial shape into

the desired target shape, while preserving semantic correspondence
between the source and the final shape. To achieve this goal, we
follow the recent success of text-guided generative methods for
images [Ramesh et al. 2022; Patashnik et al. 2021], meshes [Michel
etal. 2021; Khalid et al. 2022], and NeRFs [Poole et al. 2022], by lever-
aging language as an intuitive tool for deforming shapes. Similarly
to these previous works, our formulation does not rely on 3D train-
ing data, but instead leverages differentiable rendering to connect
powerful pre-trained image encoders (such as CLIP [Radford et al.
2021]) to provide a signal for modifying the geometry. After the
deformation process, the resultant geometry respects the structure
and characteristics of the source mesh, while visually adhering to
the text specifications. In contrast to previous text-guided works
which aim to either hallucinate geometry from scratch [Jain et al.
2021; Poole et al. 2022; Wang et al. 2022] or preserve the geometry
of an input mesh [Michel et al. 2021] while adding detail, we instead
focus on the shape deformation task.

Our framework manipulates an existing input shape, to enable
producing high-quality geometry from the source mesh. More-
over,as can be seen in Fig. 1, our framework is capable of producing
both low-frequency shape changes and high-frequency details (e.g.
the cow’s neck is elongated when deforming to a giraffe) and incor-
porate details (scales are added when deforming to an alligator). The
resulting correspondences from source shape to target are continu-
ous and semantically meaningful (“leg deforms to leg”), which we
visualize by coloring the source mesh (e.g. in Fig. 1 and throughout).
This property is especially critical for shape-morphing applications.

Thus, our framework is required to satisfy several properties: 1)
produce high-quality surface geometry, with minimal self-intersections
and noisy normals; 2) produce plausible results which match the
text description; 3) adhere to the input geometry (e.g., deform the
source’s head into the target’s head and not into body).



2« William Gao, Noam Aigerman, Thibault Groueix, Vladimir G. Kim, and Rana Hanocka

w A

@,3

&

“scary alien” “dachshund” “fluffy cat” “snake”
e | Ul \ﬁ @ E
? -
“banjo” “heart vase” “high heel” “kettle”

ARV TR Y

“incense stick”  “genie lamp” “royal goblet” “pagoda”

Fig. 2. Gallery of results. Source meshes inset and target text below.

This leads to several challenges which we solve through our techni-
cal contributions.

First, straightforward optimization of mesh vertices through dif-
ferentiable rendering, as previous text-to-3D methods displayed,
often converges to undesirable local minima, and gradient steps
often turn parts of the mesh inside-out, introducing significant ar-
tifacts. The crux of the difficulty lies in that the back-propagated
gradient from CLIP is noisy, with many undesirable local minima
and arbitrary directions. Thus, instead of displacing vertices, we
take inspiration from Neural Jacobian Fields [Aigerman et al. 2022]
to devise a more robust representation of deformations. We opti-
mize matrices representing the deformation’s gradients, i.e., the
Jacobians of each of the triangles, and compute the deformed vertex
positions from them, by solving Poisson’s equation. Our key obser-
vation is that representing the deformation through Jacobians in
this way leads to a representation that favors smoother, large defor-
mations, and leads to a global relation between vertices and pixels,
thus avoiding localized noisy gradients. More precisely: i) smooth
Jacobians represent low-frequency, large-scale deformations, and
ii) Poisson’s equation leads to each Jacobian affecting all vertices,
and in turn all pixels of the rendering. Thus, when CLIP’s gradients
back-propagate to the Jacobians, each pixel’s gradient has a global
effect, leading to a more regularized solution, see Fig. 3.

Second, we observe that CLIP per-pixel embedded features are
unfortunately view-dependent and the same 3D coordinate may be
assigned significantly different features in different 2D viewpoints.
This in turn implies a given vertex on the mesh may receive con-
flicting gradients from different viewpoints (conceptually, when
deforming a cow into an elephant, one viewpoint may try to tug
on a vertex to grow a trunk out of it, while the other will try to use
it as a tip of a tusk). This leads to incoherent results, and, in some
cases, lack of global consistency (e.g., adding multiple trunks when
deforming a cow into an elephant). To counter that, we devise a
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Fig. 3. Globally-Coherent Deformations. Max Planck deforms into dif-
ferent targets using our method (bottom row), where the front/back view is
shown in pairs of left/right. Removing Jacobians and predicting displace-
ments (top row) takes locally sub-optimal steps, which results in distorted
shapes with significant artifacts. Jacobians produce global deformations, re-
sulting in cleaner geometries and even prevents the spurious face mirroring
(for example, in “Obama”).

novel loss, which encourages vertices to achieve similar CLIP fea-
tures from different viewpoints, thereby leading to global coherency
in the deformations.

Third, to ensure the deformed shape still lies in semantic corre-
spondence to the input shape, we add a identity-preserving term,
which ensures that the deformation optimization step does not stray
too far from the initial input mesh, thereby preventing the optimiza-
tion from ignoring the input geometry.

Through experiments, we show we can apply text-driven defor-
mations to a large class of source shapes and desired targets (from
organic to man-made shapes). TextDeformer produces plausible
shapes, beyond the capabilities of previous text-driven mesh gen-
eration techniques, while additionally providing abilities achieved
solely through a deformation framework, such as significant resem-
blance to the input shape, and providing meaningful correspon-
dences between the source and deformed shapes.

2 RELATED WORK

There has been a large variety of works in the space of text-guided
content synthesis driven by CLIP [Radford et al. 2021], a founda-
tional model which learns a joint embedding space for text and
images. Many generative models such as StyleCLIP [Patashnik et al.
2021], GLIDE [Nichol et al. 2021], and DALLE-2 [Ramesh et al. 2022]
leverage text during training by computing distance between text
and images in the embedding space of CLIP. Additionally, there has
been work on using CLIP guidance in fine-tuning the latest state-of-
the-art diffusion models to achieve even higher quality results [Kim
et al. 2022].

Text-Guided 3D Synthesis. In comparison to text guided image
generation, text-to-3D is relatively undeveloped. While there are
some works that propose training joint embeddings of text descrip-
tions and 3D objects [Chen et al. 2018], these works are lacking
in scale as the largest captioned 3D dataset (the recent ObjaVerse
dataset with 800k assets [Deitke et al. 2022]) is several orders of mag-
nitude smaller than the LAION-5B dataset [Schuhmann et al. 2022].
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Fig. 4. Overview. TextDeformer deforms a base mesh by optimizing per-
triangle Jacobians using natural language as a guide. We optimize the defor-
mation using three losses: a CLIP-based semantic loss drives the deformation
toward the text prompt, a view-consistency loss matches multiple views of
the same surface patch to ensure a coherent deformation, and our regular-
ization on the Jacobians controls the fidelity to the base mesh.

Nevertheless, there have been large strides in text-to-3D leveraging
large pre-trained 2D models such as CLIP.

CLIP-Forge [Sanghi et al. 2021] overcomes the lack of pre-trained
counterpart to CLIP for 3D by using renderings of training shapes
to bridge the gap between text and 3D data. They first train a voxel
encoder and an implicit decoder on available 3D datasets using
CLIP image embeddings, then swap image embeddings for text
embeddings at inference time. However, their method is still limited
by the availability of 3D datasets used to train their autoencoder.
Point-E [Nichol et al. 2022] proposes to generate an image from
text using a 2D diffusion model, then trains a point cloud diffusion
model conditioned on images on a private dataset of millions of 3D
shapes. While not on par with the state-of-the-art in terms of shape
quality, their approach can generate 3D shapes significantly faster.

Several approaches tackle zero-shot geometry synthesis, bypass-
ing the need of a 3D dataset. Dreamfields [Jain et al. 2021] leverage
volume rendering with a Neural Radiance Field (NeRF) [Mildenhall
et al. 2020] to directly optimize views of a 3D shape against a desired
text prompt in CLIP’s embedding space. Recently, leveraging 2D
diffusion models [Rombach et al. 2022; Saharia et al. 2022], Dream-
Fusion [Poole et al. 2022] and [Wang et al. 2022] propose to distill
such models as a differentiable image-based loss. Extracting and
editing an explicit mesh from these works is not straightforward,
since NeRFs represent shapes through network weights.

Other works have used surface-based differentiable rendering
in order to pass views of explicit 3D objects to CLIP. Using this
method, Text2Mesh [Michel et al. 2021] employs a network to predict
colors and deformations along the normals of a template mesh.
Their objective is to stylize the template mesh while preserving the
initial content. In contrast, CLIP-Mesh [Khalid et al. 2022] proposes
deforming the vertices of a sphere in accordance to an input text
prompt to synthesize a completely new geometry. Magic3D [Lin et al.
2022] combines both representations by first optimizing a radiance
field using score-distillation similar to DreamFusion, then extracts
an explicit mesh from the radiance field and optimizing its vertices
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via differentiable surface rendering and score distillation. The code
is not public at the time of submission. Our work also leverages
differentiable rendering and CLIP, but focuses on the problem of
deforming explicit geometry rather than generating it from scratch.

Neural Shape Deformation. Shape deformation has been tradi-
tionally approached by providing a user with handles that control
a deformation space, either through an energy-minimizing formu-
lation [Sorkine et al. 2004; Sorkine and Alexa 2007] or through
skinning the mesh with weights that interpolate coordinates with
respect to the handles [Jacobson et al. 2014; Fulton et al. 2019]. Skin-
ning methods have been used extensively in learning context [Xu
etal. 2019, 2020; Holden et al. 2015; Li et al. 2021], point handles [Liu
et al. 2021], and cages [Yifan et al. 2020], while variational formu-
lations are used as regularizers, e.g., ARAP [Sun et al. 2021] or the
Laplacian [Kanazawa et al. 2018]. Both of these approaches span
only a subset of possible deformations and prevent fine-grained
control over details.

Other methods focus on learning tasks over one template mesh [Tan
et al. 2018; Gao et al. 2018], and assign per-vertex coordinates [Shen
et al. 2021] or offsets from a simpler (e.g., linear) model [Bailey et al.
2018, 2020; Romero et al. 2021; Zheng et al. 2021; Yin et al. 2021].

While some recent works propose data-driven approaches to
predict realistic deformations [Aigerman et al. 2022; Jakab et al. 2020;
Yifan et al. 2020; Hanocka et al. 2018; Yumer et al. 2015], the semantic
capabilities of all these works are limited once again by the lack
of 3D datasets pairing shapes and captions. Our work is similar in
spirit to these methods, but instead of requiring explicit supervision,
we leverage differentiable rendering and powerful visual models
such as CLIP to drive deformations of a template shape.

3 METHOD

Fig. 4 shows an overview of our method. Given an input shape,
TextDeformer enables manipulating the geometry guided by a user-
specified text description.

We represent the geometry of the input shape using a mesh M
defined by a set of vertices V € R™*® and faces . We optimize a
displacement map @ : R> — R? over the vertices through differen-
tiable rendering.

Deformations through Jacobians. A naive optimization of ®
would simply entail directly displacing each vertex V, which may
overly distort the original shape, especially when the target text
describes a highly-detailed texture. This is due to this representation
exposing high-frequency, oscillatory modes of deformation. Thus,
in this work we opt for a different parameterization of deformations.
Inspired by Neural Jacobian Fields [Aigerman et al. 2022], we param-
eterize the shape using a set of per-triangle Jacobians which define
a deformation. Specifically, we represent per-triangle jacobians by
matrices J; € R>*3 for every face f; € F. Following [Aigerman et al.
2022], we solve a Poisson problem to compute a deformation map
®* as the mapping with Jacobian matrices for each face that are
closest to {J;} in the least-squares sense, that is:

@ =min 3" 1£llIVi(®) - Jil} W
fieF

where V;(®) denotes the Jacobian of ® at triangle f; and |f;| is
the area of that triangle. Hence, we may optimize the deformation
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Fig. 5. Text-driven deformation. Our method can deform the same source
into different text-specified geometries, achieving local geometric details
(shoe laces and giraffe) and low-frequency shape modifying deformations
(body of guitar, shape of animal).

mapping @ indirectly by optimizing the matrices {J;} which define
®*. These Jacobians are initialized to identity matrices, thereby
initializing ®* as the identity mapping. Please refer to [Aigerman
et al. 2022] for the full technical details.

Language Guidance. Our objective is to use text to guide the
deformation of the source shape. We leverage the pre-trained vision-
language CLIP [Radford et al. 2021], which provides a shared embed-
ding space between images and text. In order to connect geometry to
images, we pass our shape through a differentiable renderer R [Laine
et al. 2020]. Hence, we may differentiably embed the renders of the
deformed shape

ep = CLIP(®*(M)) € R312

We abuse notation and the rendering function R is understood to
be implicit when passing shapes to CLIP. The desired deformation,
described with a natural language prompt P, is also embedded
ep = CLIP(P) € R3!2. Then, we may optimize ®* such that e
and ep agree, by maximizing the cosine similarity between the
embeddings:

Lp(®*, M, P) =sim (ep, ep) 2)

where sim(-, -) stands for cosine similarity. Similarly to StyleCLIP [Patash-

nik et al. 2021], we find that incorporating relative directions in
CLIP’s embedding space can give stronger signals when the op-
timization landscape between ®* and % is unclear. Given a base
caption Py that describes M, we compute the direction between
the target prompt and the base prompt: ACLIP(P, Py) = CLIP(P) -

Fig. 6. Deformations of different source vases into the same target text, “a
cactus” and different source meshes into the same target text, “a skyscraper”.

Our method meaningfully respects the input geometry while conforming
to the desired target text.

CLIP(®y). We compute the direction of the deformations and aim
to optimize:

Lpp (@*,P,Py) = sim (ACLIP(P, Py), ACLIP(O* (M), M)). (3)

Jacobian Regularization. To prevent the deformation from
straying too far from the input undeformed geometry, we intro-
duce another regularization term on the predicted Jacobians, which
penalizes the difference between the Jacobians {J;} and the identity,
i.e., no deformation:

|71
Li(ty) =a ) i = 1llz (4)
i=1

where « is a hyper-parameter which may be tuned to control the
strength of the deformations defined by {J;}.

View Consistency. A common problem when performing multi-
view optimization through CLIP is the lack of view-consistency, i.e.,
a particular view may pull the shape toward a specific deformation
while another view pulls toward a different deformation. Averaging
gradients on the Jacobians for each view does not necessarily lead to
a coherent 3D deformation which may manifest in various artifacts,
including muddled details and incorrect geometry.

We introduce another regularization term to tackle this problem
by utilizing the patch-level deep features of CLIP’s vision trans-
former (ViT). In ViTs, the image is split into non-overlapping patches
Po, P1, ... Pp, which are then projected into a higher-dimensional
space and passed through transformer encoder blocks 71, 72, . . . Tp.
For each vertex v € V, and each render r € R(M)), if v is visible, we
compute the pixel p(v, r) in r that contains v. Then, by associating
p(v,r) with the nearest corresponding patch center P(v,r), we ex-
tract a deep feature vector corresponding to v and r and encourage
vertices to have similar deep features across renders from different
viewpoints:

[RIM)RM)]
Lyc(v) = sim (7 (P (v, 1)), T (P(,77))) ~ (5)
=1 j=1
Jj#i

for some chosen layer 7. In practice, we choose to use the token
output of the final transformer block. Then, we simply penalize this
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Fig. 7. Identity preservation. The source shape (left) is deformed into a "giraffe” (top), ”pagoda” (bottom) using decreasing amount of weight on the proposed
Jacobian regularization. Higher weight encourages preservation of the identity of the source. Note that results with zero Jacobian regularization (right column)

may contain artifacts.

loss over all vertices v € M:

Lvc(M)=f ) Lyc(o) ©)
veV
where f is another tunable hyper-parameter. To compute P(v,r),
we follow [Amir et al. 2022] by modifying CLIP’s ViT to use a smaller
stride in its initial convolution, obtaining overlapping patches. Then,
by interpolating the positional encoding, we achieve finer-resolution
deep features.

4 EXPERIMENTS

We run TextDeformer on a variety of text prompt, source mesh pairs.
Each pair takes approximately 1.5 hours for 5000 iterations.

4.1 Generality of TextDeformer

We show that TextDeformer can handle a wide variety of source
and target prompts. We represent the source mesh as a small inset
next to the deformed shapes unless otherwise specified. Fig. 2 shows
one such collection of source and targets. We see that TextDeformer
is capable of producing high-quality results for different types of
source and target pairs.

Adjective Targets. We see that TextDeformer is capable of de-
forming source meshes in accordance to a target adjective. In Fig. 2,
we see that TextDeformer deforms a cat to be fluffy,” a vase to be
“heart-shaped,” an alien to be “scary,” and a shoe to be “high-heeled.
For this style of target text, our method produces deformation maps
that preserve the overall structure of the source shape.

Related Targets. TextDeformer is also capable of deforming
source meshes into related shapes, which are not exactly descriptors
of the original mesh, but also not too semantically different. For
example, in Fig. 2, we see that TextDeformer is able to deform an
acoustic guitar into a “banjo,” a candle into an “incense stick,” the
Eiffel tower into a “pagoda,” a vase into a “royal goblet and so on.

Unrelated Targets. Finally, we observe that TextDeformer is ca-
pable of deforming source meshes into completely unrelated shapes,

which are far from the source mesh. This capability is illustrated
in Fig. 2 where an ant is deformed into a “snake,” and a clothing
iron is deformed into a “kettle,” as well as in Fig. 1 where a cow is
deformed into various unrelated animals such as a “turtle”.

4.2 Expressiveness of TextDeformer

Frequency. We study the expressiveness of our method by experi-
menting with different text prompts for the same source mesh. We
observe that TextDeformer is powerful enough to express both high-
frequency texture details as well as low-frequency deformations to
the shape structure. In Fig. 5, we see in the top row that TextDe-
former can produce the requisite low-frequency deformations to

Fig. 8. Visualizing iterations of the optimization as the source mesh is
deformed to the target (“Einstein”, “Obama”). Due to our formulation and
energy, each facial feature of Max Planck is deformed into the corresponding

facial feature of the target (nose to nose, eyes to eyes etc.).
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Fig. 9. Viewpoint Consistency Ablation. Ablation results of removing Lyc for four different source-text pairs. In each example we see instances of incorrect

geometry in the shapes deformed without Lyc.

change the donkey into various other animal shapes, but also add
high-frequency deformations to emulate “giraffe” spots. Similarly in
middle row, TextDeformer produces different low-frequency maps
to change the shape of the guitar body while preserving the neck.
Alternately in the last row, TextDeformer produces high-frequency
deformations to emulate fine details such as the laces of an “army
boot” or the creases in a “sporty shoe” Similarly, we observe TextDe-
former producing high-frequency deformations in Fig. 1, particular
in the “alligator” example.

Dense Matching. In Fig. 8, we demonstrate the ability of TextDe-
former to preserve highly detailed semantics throughout the opti-
mization process. Not does TextDeformer correctly deform features
of Max Planck to the corresponding features of the target (“Einstein,”
“Obama”), it is consistent at every step. We observe at different inter-
mediate faces that the corresponding features are always mapped
correctly.

4.3 ldentity Preservation

We demonstrate our method’s ability to preserve the source shape
in two ways.

Impact of the Input Geometry. In Fig. 6, we use TextDeformer
to deform different vases with various appendages into “a cactus”
Note that the resulting deformation map grows cactus branches
depending on where appendages are on the source mesh. Hence,
TextDeformer is able to produce a deformation map that conforms
to the target text, “cactus,” in an adaptive manner, borrowing coarse
structures from the input geometry. We also observe a similar effect
when deforming semantically diverse meshes into the target text,
“skyscraper”. TextDeformer preserves different aspects of each mesh,
such as the base of the candle and the body of the guitar. It also
produces interesting variation e.g. deforming the flatter iron into a
dome structure instead of a thinner needle.

Jacobian Regularization. Recall that we also define a Jacobian
regularization term Ly in (2) which is scaled by a hyper-parameter a.
In Fig. 7, we show that adjusting « controls how far the deformation
map ®* is allowed to deviate from the source mesh. With a = 25, we
see that the cow and the Eiffel tower do not change meaningfully in
accordance to their respective text prompts (“giraffe” and “pagoda”),
while setting @ = 0 may result in some artifacts in the deformed
shape. We observe that setting « to intermediate values offers the
best results.

4.4 Viewpoint Consistency

We experiment with the qualitative effect of the viewpoint consis-
tency loss Lyc by using TextDeformer with and without this loss
term and noting the differences in the deformed meshes. We observe
in Figure 9 that the deformations produced without Ly, although
smooth due to our choice in representation, often contain unrealistic
geometric features. Such abnormalities can be caused by outliers
in the sampled camera views during optimization. This problem is
especially apparent in the “gaming chair] in which the backrest is
crooked. This inaccuracy may appear correct in some perspectives,
but is overall an undesirable feature. Another example is the tip of
the “skyscraper,” which is pulled to one side of the building during
optimization. Finally, we observe that the back of the “fluffy poodle,
and the wings of the “bat” are incorrectly curved inwards when they
are optimized without Lyc. We provide a quantitative evaluation
of these observations in Sec. 4.7.

4.5 Effect of Jacobians

We also experiment with replacing Jacobians with vertex displace-
ments in our pipeline, but keeping the additional losses we introduce,
Lap and Lyc.

Surface Quality. We observe that our use of Jacobians plays a
key in obtaining high-quality surface geometries. In Fig. 10, we show
that replacing Jacobians with vertex displacements in TextDeformer

“dlamondsiaped vase”

Fig. 10. Deformation Ablation. Top row: TextDeformer with vertex dis-
placements. Bottom row: TextDeformer with Jacobians. Jacobians are crucial
to preserving the structure of the input geometry and maintaining high-
quality surfaces.
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drastically decreases the resulting surface quality for three differ-
ent examples. In the “diamond-shaped vase,” vertex displacements
cause the shape to collapse inwards. In the other two examples,
vertex displacements create details which do not respect the initial
shape template and contain many self-intersections. The bottom
row of Fig. 12 highlights this deterioration of surface quality for
another example. We observe that vertex displacements cause a
large number of self-intersections, even in areas where the resulting
surface appears to require a relatively simple deformation, such as
the lens of the “goggles”

Globally-Coherent Deformations. Recall from (1) that we
solve a global Poisson system to compute the deformation map
from the Jacobians. Hence, unlike the gradients of vertices which
only affect one point, gradients propagated through Jacobians in-
fluence a large surface mesh area, leading to a globally-coherent
deformation. In Fig. 3, in which a bust of Max Planck is deformed to
various other faces, we observe that vertex displacements take local,
sub-optimal steps, not only contributing to poor surface quality, but
also, in the example of “Obama,” causing spurious face mirroring
on the back of the head. Since there are few camera views in which
the front and back of the head are visible, the optimization process
naturally leads to this result. However, we observe that Jacobians
do not experience this artifact.

CLIP R-Precision (L/14) T Intersections |

Ours 55.2% 3.2%
Ours-noVP 51.5% 3.3%
Ours-Verts 55.4% 67.7%
CLIP-Mesh 57.4% 62.8%
Text2Mesh 12.7% 17.3%

Table 1. Quantitative evaluation. We use our text prompts and deformed
meshes in a retrieval task to compute R-Precision. We observe that regular-
izing for viewpoint consistency improves TextDeformer R-Precision. TextDe-
former and CLIP-Mesh achieve quantitatively comparable R-Precision,
TextDeformer (Ours) produces higher-quality geometry both qualitatively
(see Fig. 12) and quantitatively (significantly fewer self-intersections). All
methods significantly outperform Text2Mesh in R-Precision.

4.6 Qualitative Comparisons

Beyond ablations, we also qualitatively evaluate our method against
two existing text-based methods for 3D synthesis and editing, CLIP-
Mesh and Text2Mesh. In Fig. 11, we show results for 5 different
target text prompts: “an alligator”, “a camel”, “a chinese lantern”,
“a comfortable chair”, and “an octupus”. TextDeformer outperforms
the baselines in multiple aspects. First, our method produces more
semantically accurate deformations: a more elongated “alligator”, a
larger “comfortable chair”, and a rounder “chinese lantern”. In the
examples of “a camel” and “an octopus” where CLIP-Mesh produces
semantically correct results, we observe that it produces poor quality
surfaces with irregular triangulation and self-intersections, whereas
TextDeformer produces smoother, more realistic geometry.

4.7 Quantitative Evaluation

We evaluate TextDeformer quantitatively in two ways, comparing
to CLIP-Mesh [Khalid et al. 2022], Text2Mesh [Michel et al. 2021], as

TextDeformer: Geometry Manipulation using Text Guidance + 7

Ours CLIP-Mesh Text2Mesh
Fig. 11. Qualitative Comparison From top to bottom, the target text

prompts are “an alligator”, “a camel”, “a comfortable chair”, “a chinese lantern”,
“an octupus”. Compared to CLIP-Mesh, our method produces more seman-
tically correct and higher quality surfaces. Text2Mesh fails to produce se-

mantically meaningful deformations in all examples.

Source

well as our method without Lyc and our method but using vertex
displacements.

Retrieval Precision. First, following CLIP-Mesh [Khalid et al.
2022], we compute the R-Precision of CLIP-L/14 on a retrieval task.
Specifically, we use a set of 111 text prompt, source mesh pairs to gen-
erate a set of deformed meshes. Then, we retrieve deformed shapes
for each text prompt through CLIP (L/14) cosine similarity. The first
column of Tab. 1 shows the results of this experiment. We observe
that the viewpoint consistency loss Lyc increases the deformation
quality of the model, affirming our observations in Sec. 4.4. We also
observe that the pipelines using vertex displacements achieve the
highest R-Precision scores. This is to be expected as vertex displace-
ments give a high amount of freedom when deforming the shape
towards the text prompt, without respect to the initial template ge-
ometry. Finally, all methods outperform Text2Mesh, which is more
suited for stylization and texturization problems rather than our
semantic editing problem.

Geometric Quality (Self-Intersections). We also measure the
ratio between the number of self-intersections in the deformed mesh
and the number of faces. This validates the qualitative evaluation of
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Fig. 12. Self-intersections. Comparison results for the shown source and
target text “goggles”. Self-intersections are highlighted in red (bottom row).
Removing view-consistency (VC) losses causes distortion on the temple
arms. Removing Jacobians and optimizing vertices introduces further surface
distortion and self-intersections which may impede utility. When applying
CLIP-Mesh to this template, we observe the “janus” effect e.g. unrealistic
repeated geometry on each side.

in Fig. 10, Fig. 11, and Fig. 12 that the vertex displacement pipelines
disregard the triangulation of the shape in order to optimize CLIP
cosine-similarity.

4.8 Qualitative Comparison with Stable Dreamfusion

In Figure 13, we compare qualitatively against Stable Dreamfu-
sion. We use the third-party open source implementation of the
method ! [Tang 2022]. We show the geometry extracted from the
neural radiance field with the representative neural image as an
inset. We observe that the surfaces of geometries from Dreamfusion
lack smoothness, which we naturally obtain through our Jacobian
representation. Second, we observe that DreamFusion often suffers
from the Janus effect, even wiht the use of prompt augmentation on
the renderings, whereas our View-Consistency loss helps produce
more coherent geometry.

5 DISCUSSION AND FUTURE WORK

In this paper, we propose TextDeformer, a zero-shot text-driven
mesh deformation technique which does not need to be trained on
any 3D dataset or 3D annotations. Instead, it is guided by pre-trained
vision-language models trained on billions of visual and language
concepts. Our work aims to produce high-quality geometry out-
puts by predicting low-frequency shape changes and high-frequency
details through source shape deformations. We opt to use per-face Ja-
cobians as a means for predicting smooth mesh deformations, which
enables retaining interesting characteristics of the source shape.
This leads to high-quality mesh outputs with useful geometry and
mitigates local artifacts commonly caused by vertex displacements.
We presented a view consistency loss, which avoids over-fitting
geometry to specific salient views, and ensures that the same region
is roughly interpreted the same from all viewpoints. Our novel loss
significantly reduces the number of visual artifacts. We also propose
an identity regularization term, which can be controlled by the user

https://github.com/ashawkey/stable-dreamfusion

“pagoda”

“high heel”

Fig. 13. Comparison to Stable Dreamfusion We compare TextDeformer
against the open-source implementation of Dreamfusion [Tang 2022] based
on Stable Diffusion [Rombach et al. 2022]. For Stable Dreamfusion, we
show a representative neural rendering as well as the extracted geometry.
For TextDeformer, we show the initial mesh. First, notice that the surface
of Dreamfusion meshes has heavy artifacts compared to the smoothness
of our deformations obtained through Jacobians. Second, we notice that
Dreamfusion suffers frequently from the Janus problem (see the high heels
for instance) which we help alleviate with our View-Consistency loss.

to control the magnitude of the deformation. We demonstrate that
our method enables retaining interesting global characteristics of
the source shape, while still matching it to a highly dissimilar term,
providing the user with a controllable and expressive system.

In the future, we would like to explore the possibility of learning
the space of prompt-driven deformations instead of just optimizing
them for a single mesh instance. This strategy would be fast, since
Jacobians can be predicted in a single feed-forward pass, instead
of through optimization. In addition, training over a collection of
shapes may induce a neural-regularization which may improve the
results further. We would like to also connect our method with a
retrieval module to provide a more comprehensive artist-driven
creation tool that enables users to explore the results arising from
different combinations of sources and prompts.
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