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Abstract
We propose a self-supervised approach to deep surface deformation. Given a pair of shapes, our algorithm directly predicts a
parametric transformation from one shape to the other respecting correspondences. Our insight is to use cycle-consistency to
define a notion of good correspondences in groups of objects and use it as a supervisory signal to train our network. Our method
does not rely on a template, assume near isometric deformations or rely on point-correspondence supervision. We demonstrate
the efficacy of our approach by using it to transfer segmentation across shapes. We show, on Shapenet, that our approach is
competitive with comparable state-of-the-art methods when annotated training data is readily available, but outperforms them
by a large margin in the few-shot segmentation scenario.

1. Introduction

Large collections of 3D models enable data-driven techniques for
interactive geometry modeling, shape synthesis, image-based re-
construction, and shape completion [MWZ∗14]. Many of these
techniques require the collection to have additional surface anno-
tations such as segmentation into functional [YKC∗16] or geomet-
ric [LSD∗18] parts. The notion of parts and their granularity can
vary significantly across different tasks, so many novel applications
require new types of annotations [MZC∗19, YLZ∗19, WZS∗19].
Deep learning algorithms have recently achieved state-of-the-art
in automatically predicting such surface annotations [QSMG16,
QYSG17, WSL∗18]. However, they typically require a significant
number of training examples for every shape category, which limits
their applicability, and bears significant start-up cost in introducing
a new type of annotation. In this work, we propose a new deep
learning approach which leverages large non-annotated object col-
lections to perform few-shot segmentation.

We rely on the idea to use shape matching to transfer labels from
similar examples. This approach has been shown to be robust in
extreme “few-shot” learning scenarios [YKC∗16] and can work ro-
bustly even in heterogeneous datasets as long as labeled models
roughly span all the shape variations. The few-shots segmentation
problem then amount to the fundamental problem of identifying
correspondences between shapes. There is a vast amount of work
on shape matching, which can be roughly separated in two trends:
(i) classical optimization based approaches; (ii) recent approaches
where correspondences are directly predicted by a neural network.

Traditional, optimization-based methods such as iterative clos-
est point (ICP) algorithm, are fast and effective with good initial
guesses and few degrees of freedom (e.g., a rigid motion) [RL01].

Figure 1: Shape deformation with cycle-consistency. Our ap-
proach takes a pair (A,B) of pointclouds as input and predicts a
deformation of A into B. During training, a cycle-consistent loss
on a shape triplet (A, B, C) allows the method to learn semanti-
cally consistent deformations fA,B, fB,C, fC,A without any priors.
Red arrows represent the learned shape deformation function and
green arrows indicate the projection of the deformed shape onto
the nearest point on the surface of the target shape.

More flexible correspondence algorithms for dissimilar models
usually require significantly more compute time to optimize for
larger number of degrees of freedom [BR07, KLF11, CK15]. Since
directly matching dissimilar shapes poses significant challenges,
these methods often rely on joint analysis of the entire collec-
tion [KLM∗12], leveraging cycle consistency priors during opti-
mization [HG13, NBCW∗11]. These joint correspondence estima-
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tion methods tend to be very compute heavy and as new models
are added to the collection, the entire optimization needs to be re-
peated. We thus turned to deep learning-based approaches.

Indeed, with the recent advances in neural networks for geome-
try analysis, learning-based methods have been proposed to address
the matching problem. Of particular interest to us is the method of
Groueix et al. [GFK∗18a], which demonstrate that one can learn
how to deform a human body template to the target point cloud,
even without correspondence supervision. In their approach, the
target point cloud is encoded into a latent descriptor space (via
PointNet encoder [QSMG16]), and then the deformation network
takes the target descriptor and a point on the template, and maps
the point to new position so that it aligns to the target. This ap-
proach is efficient, since it only requires a forward pass through a
network. It also has the benefit of holistic understanding of shape
deformations, since the same neural network is trained for all mod-
els in the input collection. However, it has to be trained specifically
for each template, limiting this method to analysis of geometrically
and topologically similar shape collections, such as human bodies.
If such a template is not available, one can pick a very generic shape
(e.g., a sphere) and still obtain some correspondences via the inter-
mediate domain [GFK∗18b]. However, as we will show, the quality
of the correspondences will degrade significantly as shapes deviate
from that domain.

In this work we propose a novel neural network architecture that
learns to match shapes directly, without relying on a pre-defined
template, by learning to predict deformations that aligns points on
the source shape to points on the target. Note that the transforma-
tion can be much more complex than a rigid transformation, and
that the space of meaningful transformation is defined implicitly
by the (unlabelled) training data. We encode both source and target
shapes and then predict the deformed position for every point on
the source conditioned on these two codes, unlike prior work that
use a fixed template common to all the shapes. We show that the re-
sults obtained can be greatly improved if the network is trained not
only with a reconstruction loss, which encourages it to deform the
source shape into the target shape, but also using a cycle consis-
tency loss. Indeed a deformation which respects correspondences
should be consistent between pairs of shapes i.e., the deformation
from A to B should be the inverse of the deformation from B to A .
More generally, in larger cycles of shapes [A1, ...,Ai, ..,AN ], global
consistency is achieved if the composition of the N successive map-
pings from Ai to Ai+1 is identity. This new consistency loss used
during training can be seen as playing a role similar to the global
consistency objective used in optimization-based approaches. Fi-
nally, our network is trained in an self-supervised manner using
only shape reconstruction and cycle consistency losses.

We demonstrate the effectiveness of our approach for shape
matching by propagating segmentations in a few-shot learning
setting on the ShapeNet part dataset [YKC∗16]. We first show
that in this extreme case with very few training examples, Point-
Net [QSMG16], a strongly supervised method, fails to general-
ize. Then, we propose several strategies for picking source shapes
and propagate the signal from them, using our predicted corre-
spondences. We demonstrate that even with a simple strategy,
such as picking the source with smallest Chamfer distance, our

method is better at transferring segmentations than other fast cor-
respondence techniques such as ICP with rigid transformation and
a prior learning-based method that aligns sphere and plane tem-
plates [GFK∗18b].

2. Related Work

Shape matching is a long-standing problem in shape analy-
sis [vKZHCO11]. It is often done explicitly, by deforming a source
shape to a target [RL01, BR07, LSP08, HAWG08, ZSCO∗08], or
implicitly, by mapping points [KLF11, CK15, OMMG10, BBK06]
or functions [OBCS∗12, RPWO18, EBC17] on one shape to an-
other. The deformation-based methods typically aim to minimize
the amount of distortion introduced by the deformation, and the
mapping-based approaches often assume that shapes to be near-
isometric. Both assumptions do not hold for very dissimilar shapes.

To address this challenge, some prior methods leverage addi-
tional context of the entire shape collection in a joint optimiza-
tion [KLM∗12, NBCW∗11]. These techniques often use cycle-
consistency as additional cue [HZG∗12,HG13,ROA∗13]. This, en-
ables estimating correspondences even between dissimilar objects
by mapping via intermediate shapes. While these traditional op-
timization techniques are very powerful, non-rigid matching in-
volves optimizing for many degrees of freedom with complex non-
convex objective functions, and takes minutes or hours. To make
matters worse, joint analysis usually scales in a super-linear manner
with number of models, and if a new shape is added to a collection,
the entire optimization needs to be repeated.

Recently, learning-based correspondence techniques were used
to address these limitations. They are fast, typically only requir-
ing a forward pass through a neural network, and they enable joint
analysis of a collection of shapes, since multiple shapes are typi-
cally used during training. Descriptor-based methods embed each
shape point into some high-dimensional space, where correspond-
ing points are embedded nearby [HKC∗18,BMRB16,WHC∗16]. In
most cases, however, a more holistic mapping for the entire shape is
often preferred, since it is more capable of preserving the intrinsic
shape structure. Litany et al. [LRR∗17] use a deep neural network
to predict a soft inter-surface mapping a common representation
used in functional map framework. Groueix et al. [GFK∗18a] pro-
pose to train a network that predicts a deformation for each point
on a template. A similar method that uses planes or spheres can
be used in case such a template is not available [GFK∗18b]. These
techniques struggle with diverse shape collections when matched
shapes have very different topology and geometry. Instead, we pro-
pose a method that takes both source and target shape as input and
infers the mapping. We also propose a novel regularization term
favoring cycle-consistency when mapping across multiple shapes
in the collection. A similar cycle-consistency loss for training deep
networks to predict correspondences between images of different
instances of objects from the same category has recently been used
in [ZKA∗16]. In this work, views rendered from different view-
points from a 3D model were used to avoid the trivial identity flow
solution, but no correspondence between 3D shapes was predicted.

We demonstrate the value of our method for few-shot seg-
mentation transfer. While many techniques have been developed
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(a) Parameter prediction network. (b) Deformation network.

Figure 2: Shape Deformation approach. Our methods take as input a pair (source A, target B) of shapes and aims at predicting the
deformation of A in B. In (a), A and B are encoded with Pointnets [QSMG16] into a latent feature vector, from which an MLP predicts
transformation parameters, used in (b) to deform A into B, by stacking Transformation Layers (TL) and Fully-Connected Layers (FC).

for strongly supervised mesh segmentation [QSMG16, QYSG17,
WSL∗18,LSD∗18,KAMC17,KHS10], they typically rely on many
training examples and fail in a few-shot scenarios (see Table 1). In
these cases, some framework propose to rely on propagating an-
notations from most similar annotated shapes via global or local
shape matching [YKC∗16]. In fact, it is common for correspon-
dence techniques to be evaluated and used for transferring various
signals between shapes [OBCS∗12, KLF11, ACBCO17, CFG∗15].

3. Learning asymmetric cycle-consistent shape matching

We address the surface matching problem by training a model that
takes as inputs a source shape, a target shape, and a point on the
source shape and generates the corresponding point on the target
shape. As pointed out in Groueix et al. [GFK∗18a], a learnable
model allows for efficient surface matching, which is in contrast
to approaches requiring optimization over a collection of pairwise
shape matches [NBCW∗11].

We assume that shapes are represented as point sets sampled
from the shapes’ surface. Given point sets A and B, our goal is
to learn a mapping function fA,B that takes a 3D point p ∈ A to its
corresponding point q ∈ B. If f is a function on points and A a set
of points, we denote by f (A) the set { f (p),∀p ∈ A}.

First, building on work on unsupervised template-based shape
correspondence [GFK∗18a] we use a Chamfer loss to minimize the
distance between deformed source fA,B(A) and the target B. Unlike
prior work, however, we do not assume that all of our shapes are
derived from the same template and directly predict template-free
correspondences between pairs of shapes.

Second, we seek to leverage the success of cycle consistency,
which has been used in shape collection optimization [NBCW∗11]
and more recently in self-supervised learning [ZPIE17], during
training of our learnable mapping function. Formally, for N shapes
X1, . . . ,XN that are assumed to be put into correspondence, we en-
force that the learnable mapping function fA,B satisfies,

∀p ∈ X1, fX1,X2 ◦ · · · ◦ fXN−1,XN ◦ fXN ,X1(p) = p. (1)

We use cycle-consistency training losses for cycles of lengths
two and three as it implies consistency for cycles of any
length [NBCW∗11]. We visualize our cycle-consistency loss in
Figure 1.

4. Approach

We describe our learnable mapping function fA,B, implemented as
a two-stage neural network, in Section 4.1, our training losses in
Section 4.2, and application to segmentation in Section 4.3.

4.1. Architecture

The architecture of our shape transformation model from a source
shape A to a target shape B is visualized in Figure 2 and can be sep-
arated into two parts: (a) a parameter prediction network which out-
puts transformation parameters given the two shapes (Figure 2a);
(b) a deformation network that transforms the first shape into the
second one using the predicted parameters (Figure 2b). We now
describe these two components.

To predict transformation parameters, A and B are first passed
into two independent PointNet networks [QSMG16] leading to fea-
ture encodings vA and vB of size 512. The resulting concatenated
descriptor vAB = [vA,vB] contains information about the pair (A,
B). A multilayer perceptron (MLP) then predicts transformation
parameters vectors p1, · · · , pK from this concatenated feature.

The deformation network (Figure 2b) takes a surface point in R3

and outputs the associated deformed point. The network is com-
posed of K modules each with the same architecture. Let’s call xk−1
the input of module k and xk its output. The operation computed by
this module is:

xk = Ak (Wk (sk · xk−1 +bk)) , (2)

where Wk is the matrix of parameters of a fully-connected layer in
R64x64, "·" refers to the Hadamard (term to term) product, Ak is the
activation function for module k and [sk,bk] = pk are the transfor-
mation parameters, both in in R64, corresponding to a scale and a
bias in each dimension. Note that this is similar to the architecture
of the T-net modules in [QSMG16, JSZ∗15], but using fewer pre-
dicted parameters. Also note that equation 2 is differentiable, which
enables the two sub-networks to be trained jointly in an end-to-end
fashion. In all of our experiments we used K = 7 modules, 64 di-
mensions for each intermediary feature and ReLU activations for
all but the last layer, for which we used a hyperbolic tangent. We
train for 500 epochs with Adam [KB14] starting with a learning
rate of 0.01 divided by 10 after 400 epochs.
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4.2. Training Losses

We train our deformation by minimizing the weighted sum over
several components: a loss enforcing cycle consistency LCy, Cham-
fer distance loss LCh, and a self reconstruction loss LSR :

Ltotal = LSR +LCh +LCy

We only use the self-reconstruction loss to stabilize the beginning
of the training and disable it after 30 epochs to focus on cycle con-
sistency and reconstruction losses. We train all parameters in our
network by sampling triplets (A,B,C) of shapes which are needed
by our 3-cycle consistency and enforcing all other losses on all the
associated deformations. We first explain how we sampled these
triplets, then detail the different terms of our loss.

4.2.1. Training shape sampling

For our cycle-consistency loss, we require a valid mapping across
shape triplet (A, B, C). As different shape categories may have
different topologies, we train category-specific networks. Further-
more, as there may be topological changes within a single category,
for shape A, we randomly sample shapes B and C from the K near-
est neighbors of A under chamfer distance. We take K = 20 and
demonstrate in the ablation study the superiority of this approach
over random sampling of shape triplets.

We apply data augmentation ψ on each sampled shape in this
order : a random rotation around the Z axis of a random angle be-
tween −40◦ and 40◦, an anisotropic scaling of random scale be-
tween 0.75 and 1.25, a bounding box normalization, and a small
random translation below 0.03.

4.2.2. Cycle-consistency loss

The cycle consistency loss is based on the intuition that a point
deformed through any cycle of deformations should be mapped
back to itself. One way to enforce consistency would be to com-
pute composite functions, for two shapes X and Y minimizing
‖p− fY,X ◦ fX ,Y (p)‖ for all p in X . However fX ,Y (p) is typically not
an element of Y , and computing fY,X ◦ fX ,Y (p) would thus require
computing the deformations fY,X of other points than the points of
Y . To avoid this, we consider instead projections of the deformed
shapes to the target shapes. More precisely, we define the shape
projection operator π

πX (p) = argminq∈X‖p−q‖ (3)

and enforce 2-cycle consistency between X and Y by minimizing

Cy2(X ,Y ) =
1
|X | ∑

p∈X

∣∣p− fY,X ◦πY ◦ fX ,Y (p)
∣∣
2 (4)

and cycle consistency for the (X ,Y,Z) cycle by minimizing

Cy3(X ,Y,Z) =
1
|X | ∑

p∈X

∣∣p− fZ,X ◦πZ ◦ fY,Z ◦πY ◦ fX ,Y (p)
∣∣
2 (5)

Our full cycle-consistency loss LCy is simply defined by summing
over possible all possible two and three cycles using a sampled
triplet (A, B, C).

LCy = ∑
X ,Y,Z∈{A,B,C}s.t.{X ,Y,Z}={A,B,C}

Cy2(X ,Y )+Cy3(X ,Y,Z)

(6)

Enforcing 2- and 3-cycle consistency implies consistency for any
cycle [NBCW∗11].

4.2.3. Reconstruction loss

As discussed in section 3, we want to enforce that every point in the
target shape is well reconstructed, but not necessarily that any point
in the source shape is mapped to the target shape, in case some part
appear in the source and not the target. We thus used asymmetric
Chamfer distance to quantify how well the network has generated
the target shape. More precisely, given a pair of shapes (X,Y), the
asymmetric chamfer Ch(X ,Y ) computes the average distance be-
tween a point q ∈ Y and its nearest neighbor in X .

Ch(X ,Y ) =
1
|X | ∑

q∈Y
min
p∈X
‖p−q‖2 . (7)

Given a training triplet (A,B,C), we define the reconstruction
loss by summing the asymmetric chamfer loss on all 6 possible
(source, target) couples.

LCh = ∑
X ,Y∈{(A,B),(A,C),(B,C)}

Ch( fX ,Y (X),Y )+Ch( fY,X (Y ),X)

(8)

If segmentation is available for the training shapes, we can com-
pute the distance in equation 7 on each segment independently,
which would add supervision on the correspondences. We of course
do not use such labels for our few-shot learning experiments, but
show in Table 2 it can be used if available to slightly boost our
results.

4.2.4. Self-reconstruction loss

We can fully supervise the deformation by manually deforming a
shape with a known transformation. We found such a supervision
was helpful to stabilize and speed up the beginning of our training.
Concretely, we sampled deformations ψ similar to what we did for
data augmentation (described above in 4.2.1) by composing (1) a
rotation, (2) an anisotropic scaling, and (3) a rescaling to a centered
bounding box. Given a transformation ψ, we compute the average
distance between the two images of a point p ∈ A under ψ and the
predicted mapping function fA,ψ(A).

SR(A,ψ) =
1
|A| ∑

p∈A

∥∥∥ fA,ψ(A)(p)−ψ(p)
∥∥∥

2
(9)

Our corresponding self-reconstruction loss LSR is the sum of this
loss for each of the three point clouds in the triplet (A, B, C) with
different random transformations.

LSR = SR(A,ψ)+SR(B,ψ′)+SR(C,ψ′′) (10)

4.3. Application to segmentation

Learning a deformation between two shapes provides an intuitive
method to transfer label information, such as a part segmentation,
from a labeled shape to an unlabeled one. In this formulation, we
assume we are given a (small) number of labeled shapes, and seek
to label each point on an unlabeled test shape. This requires us to
decide which of the labeled shapes we should use as the source to
propagate labels to the target shapes.
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Selection Criteria. Given a target T , We manually define 4 possi-
ble source selection criteria:

• Nearest Neighbor: The source shape S that minimizes the
Chamfer distance between S and T is selected.
• Deformation Distance: The source shape S that minimizes the

Chamfer distance between fS,T (S) and T is selected.
• Cosine Distance: The source shape S that minimizes the cosine

distance distance between the PointNet encodings vS and vT is
selected.
• Cycle Consistency: The source shape S that minimizes 2-cycle

loss for the pair (S,T ) is selected.

Having selected a pair (S,T ), labels can be transferred directly with
our approach.

Voting strategy. Instead of selecting a single source shape to get
labels from, combining several voting shapes allows for better seg-
mentation. We select the K-best sources, and make each source
shape vote with equal weight for the label of each target point. We
evaluate the benefits of this voting approach in Section 5.2.2.

5. Results

In this section, we show qualitative and quantitative results on the
tasks of few-shot and supervised semantic segmentation and com-
pare against several baselines.

Data and evaluation criteria. We evaluated our approach on the
standard ShapeNet part dataset [YKC∗16]. We restricted ourselves
to the 5 most populated categories, namely Airplane, Car, Chair,
Lamp, and Table. Point clouds sampled on mesh objects are densely
labeled for segmentation with one to five parts. We follow Qi et
al. [QSMG16] and report the mean intersection over union (mIoU)
between the predicted and ground truth segmentation across in-
stances in a category.

Baselines. We compare our unsupervised approach against super-
vised and unsupervised approaches. We used PointNet as a super-
vised baseline. Our unsupervised baselines include a learned ap-
proach derived from Atlasnet [GFK∗18b] and variants of iterative
closest points (ICP) [Zha94, BM92]. AtlasNet is a template-based
reconstruction method that predicts a transformation of the tem-
plate matching the target shape. The learned deformations have
been previously observed to be semantically consistent [GFK∗18a].
To transfer segmentation labels from a source to a target, we
project the source labels on the source reconstruction through near-
est neighbors, then on the template through dense correspondence
between the template and the source reconstruction. Similarly,
we transfer labels on the template to the target by dense corre-
spondence and nearest neighbors. AtlasNet is trained on the same
train/test splits as our approach. We consider two settings of At-
lasNet – with 10 patches or 1 sphere as the template. Additionally,
we use two standard shape alignment baselines. First, labels can be
transferred from source to target through nearest neighbor match-
ing, which we call the Identity baseline. An immediate refinement
over this baseline is to apply ICP to align the source to the target,
and then use nearest neighbors. We call the latter the ICP baseline.

5.1. Qualitative Results

Correspondences. In figure 5 we visualize in more detail the cor-
respondences obtained with our approach. We visualize how each
point on the source shape is deformed and transferred to the target
shape using a colored checkerboard. For each example, we show a
successful deformation (top) and a failure case (bottom). Note how
the checkerboard appears nicely deformed in the case of success-
ful deformation, and still appears consistent on some parts in the
failure cases.

Cycle-consistency. In figure 6 we compare the mappings learned
by our approach with and without cycle-consistency loss. The
Chamfer Distance is a point based loss with no control over the
amount of distorsion. Notice in this case that the deformed source
has large triangles. It indicates that the mapping learned by a
Chamfer loss alone is not smooth, and can’t be used in label
tranfer. On the other hand, the cycle-consistency loss leads to a
smooth and high quality mapping.

Segmentation transfer. When looking at the results, a first sur-
prising observation is the high quality of the identity baseline
(this is quantitatively confirmed in Table 2). Indeed, the differ-
ent criteria tend to select shapes that are really close to the tar-
get. To focus on interesting examples, we selected in Figure 3
the pairs that maximize the performance improvement provided
by our method compared to the identity baseline using the cycle-
consistency-selection criterion. The richness of the learned defor-
mations allows our method to find meaningful correspondences in
cases where the training example is far from the target shape and
the identity baseline does not work. Note that the deformations are
often far from isometric. Thus, methods that rely on regularization
toward identity, a popular approach to regularize learned deforma-
tions [GFK∗18a, KTEM18, WZL∗18], would likely fail.

Failure cases. Figure 4 shows failures of our method. We show for
each category the pair (S,T ) which minimizes our segmentation
transfer performance. It is clear that the corresponding shapes are
rare and specific object instances. We observe two main sources
of errors. First, in some cases where we correctly deform S in T ,
the ground truth labeling was inconsistent, leading to large errors.
For example, notice how the source airplane has a single label.
Second, S and T are sometimes too distant topologically so that
a high-fidelity reconstruction of T is impossible by deforming S.
For example, notice how the pole of the lamp has been erroneously
inflated to match the target shape.

5.2. Quantitative Results

5.2.1. Few-shot Segmentation

In this section, we evaluate our approach on the task of transferring
semantic labels from a small set of segmented shapes to unlabeled
data.

We report quantitative results for few-shot semantic segmenta-
tion on point clouds in Table 1. Note that the learning-based meth-
ods are all trained separately for each category. Since the results de-
pend on the sampled shapes used in the training set, we report the
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(a) Input shape
(target)

(b) Retrieved shape
(source)

(c) Deformed
retrieved shape

(d) Transferred labels
to input

(e) Ground truth
labels

(f) Identity baseline
segmentation

Figure 3: Qualitative results. For each input shape (a), we select the top nearest neighbor from 400 training examples with part segmentations
using the cycle-consistency criterion (b). We apply our approach to deform the retrieved shape to align with the input shape (c). Given the
deformed shape, we transfer the labels onto the input shape (d). For each category, we show the top results that maximize IoU with the ground
truth (e). For comparison, we show the Identity baseline in (f). Notice how our method successfully transfers labels and improves over the
baseline.
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(a) Input shape
(target)

(b) Retrieved shape
(source)

(c) Deformed
retrieved shape

(d) Transferred labels
to input

(e) Ground truth
labels

(f) Identity baseline
segmentation

Figure 4: Failures. Example failures include when a retrieved shape has inconsistent annotation (rows 1,2,5) and poor deformation due to
different topology (rows 3,4).

10 shots Selection Criterion Airplane Car Chair Lamp Table

(a) Pointnet - 14.0±8.0 11.7±10.4 21.1±13.1 26.0±13.2 43.5±15.5

(b) Atlasnet Patch Nearest Neighbors 62.6±2.4 52.3±9.1 72.1±1.2 62.8±2.2 61.6±3.7
(c) Atlasnet Sphere Nearest Neighbors 62.2±2.2 52.9±9.1 70.2±1.2 59.3±1.8 60.0±5.1
(d) ICP Nearest Neighbors 65.5±3.1 61.3±1.1 75.8±1.2 64.8±5.0 64.9±3.9
(e) Ours Nearest Neighbors 666777...111±222...999 666111...444±111...111 777888...999±111...111 666555...888±555...222 666666...111±444...555

(f) Ours Cycle Consistency 67.9±3.0 60.2±3.4 81.8±0.7 69.1±5.4 68.8±4.0
(g) Ours Oracle 74.9±3.0 68.6±2.4 86.4±0.6 80.3±3.8 77.8±2.1

Table 1: Few-shot segmentation:. We compare (e, f) our approach with (a) Pointnet [QSMG16], a supervised method, trained per category,
(b, c) two unsupervised baselines based on Atlasnet [GFK∗18b] and (e) ICP. We pre-train all (b, c , e, f) unsupervised approaches on the train
splits (without labels). Given a target shape T and 10 segmented train samples, we select T ’s nearest neighbors S. In Atlasnet (b, c), labels
are propagated through the template. In our approach (e, f, g), labels are propagated from TS to T. We report in (g) the best performance of
our method over the 10 shots. The mean IoU is reported. Results are averaged over 10 runs.

average and standard deviation over ten randomly sampled train-
ing sets. We use the Nearest Neighbors criterion to pair sources
and targets and compare our approach against all baselines (b, c, d,
e). Notice that our approach out-performs all baselines on all cate-
gories. Interestingly, the AtlasNet baseline is not on par with ICP,

hinting at the difficulty of predicting two consistent deformations
of the template.

We find that the Cycle Consistency criterion (f) is a stronger se-
lection criterion than Nearest Neighbors and boosts the results sim-
ply by selecting a better (Source, Target) pair. We also report an
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Figure 5: Mapping function quality. We apply a checkerboard col-
orization scheme on the source (left), and use our approach to de-
form (middle) the source shape to the target shape (right). The la-
bels are transferred from the deformed shape to the target shape
through nearest neighbors. For each category, we show a example
of good reconstruction (top) and poor reconstruction (bottom). No-
tice the high quality of the mapping in both cases.

oracle source-shape selection with our approach where the source
shape maximising IoU with the target is selected, which corre-
sponds to the scenario where an optimal source shape is selected.
Notice the large improvement of the oracle, showing the quality of
our deformations and the potential of our method.

5.2.2. Supervised segmentation

Our method is not designed to be competitive when many training
samples are available. Indeed, it solves for the deformation against
each of the provided segmented shapes, which for large numbers
of examples can be computationally expensive compared to feed-
forward segmentation predictions like PointNet [QSMG16]. One
forward pass through our network deforms a source shape in a tar-
get shape in 7 milliseconds (ms), with a 7ms standard deviation
(std). ICP takes 28 ms with a 17 std†. Here, however, we study the
performance of our method in this case, using the segmentation of
the many training shapes as supervision during training and making
the ten best shapes vote during testing. We report results of our un-
supervised method. In addition, we consider adding supervision to
our approach by computing Chamfer distances over points with the
same segmentation label. The corresponding results are reported in
Table 2

† We use Open3D [ZPK18] to compute ICP ran on Intel i7-6900K - 3.2
GHz and run our method on an NVIDIA TITAN X.

Figure 6: Cycle-consistency performance. We apply a checker-
board colorization scheme on the source (left), and use our ap-
proach with cycle-constistency (top) and without (bottom) to de-
form (middle) the source shape to the target shape (right). The la-
bels are transferred from the deformed shape to the target shape
through nearest neighbors.

Table 2 shows that, when using all the annotations, nearest neigh-
bors is again a surprisingly good baseline, only slightly below per-
formance of PointNet. Despite the good performance of the identity
baseline, our method outperforms it in all categories and performs
on par with PointNet. Note that the encoders of our approach incor-
porate two PointNet architectures, which makes this result intuitive.

Table 2 also highlights the importance of the criterion selection.
Notice the significant boost in each category gained by carefully
choosing the selection criterion over the Nearest Neighbors crite-
rion. The exciting performance of the oracle, way over the PointNet
baseline, is another incentive at carefully designing selection crite-
ria.

Finally, notice that our unsupervised trained model is on par
with our supervised one. The boost gained by supervised training
is marginal except in the car category. It confirms that our cycle-
consistent loss is efficient to enforce meaningful part correspon-
dence.

5.2.3. Selection criteria and voting strategy

Figure 7 shows a quantitative comparison on all criteria, on all cate-
gory for the identity baseline and our approach using a voting strat-
egy with different number of shapes. The oracle, and PointNet per-
formances are also reported. The Deformation Distance criterion
outperforms all other criteria but remains far from the oracle. The
oracle performs better than the PointNet baseline across all cate-
gories. As a sanity check, we observe that our method outperforms
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Figure 7: Criteria and voting strategies. Study of the number of voting shapes for the transfer of segmentation label, across 4 criteria (see 4.3)
- Nearest Neighbors, Deformation Distance, Cosine Distance and Cycle Consistency -, and across 5 Shapenet categories. Our transformation
method (solid lines) almost always enhance the identity baseline (dashed lines). We report a supervised baseline, Pointnet [QSMG16] and
the oracle source which maximizes IoU for our method. Notice how the oracle significantly outperforms the Pointnet baseline, making the
search of a strong selection criterion a good direction. Our models are category specific and trained without segmentation supervision. All
of the train set is searched to maximize each criterion.

Selection Airplane Car Chair Lamp Table

(a) Pointnet - 83.4 74.9 89.6 80.8 80.6

(b) Identity NN 81.3 74.0 86.1 78.4 78.9

(c) Ours unsup NN 81.5 73.9 86.6 78.8 79.2
(d) Ours unsup Best criterion 83.4 74.6 88.4 79.8 79.7
(e) Ours unsup Oracle 87.9 78.9 93.0 93.9 89.3

(f) Ours sup NN 81.2 75.9 86.9 78.4 79.0
(g) Ours sup Best criterion 83.5 76.4 88.8 79.3 79.9
(h) Ours sup Oracle 88.0 80.2 93.1 93.4 89.4

Table 2: Supervised segmentation:. We compare our approach
with (a) Pointnet [QSMG16] and (b) Identity baseline. Our ap-
proach can be trained with part supervision (f, g, h) or without
(c, d, e). Given a target shape T and the segmented train set, we
compare 3 types of source shapes : (b, c, f) T ’s Nearest Neighbors;
(d, g) the best shape among all criteria see 4.3; and (e, h) the a pos-
teriori best shape over all train sample. A voting strategy is used
on the top 10 shapes in (b, c, d, f, g). The mean IoU is reported.

the identity baseline in all settings, showing that it helps to apply
our method to transfer labels from S to T .

Figure 7 also confirms that using several source shapes is ben-
eficial when many annotated examples are available. In the limit,
when all source shapes vote and selection criterion does not matter
anymore, an average labelling is predicted with poor performances,
which again outlines the importance of source selection. Using nine
source shapes performs the best across most criteria and categories
when all the training annotations can be used.

5.3. Ablation Study

In this section we conduct an ablation study to empirically vali-
date our approach. Table 3 shows performances without the cycle
loss, without Chamfer loss, and without any specific triplet sam-
pling strategy during training, simply selecting random shapes.

Table 3 shows that the cycle consistency loss is critical to the suc-
cess of our method (relative drop of 23% in IoU). Training without
Chamfer distance as a reconstruction loss performs slightly better
than the identity baseline and 3% below our approach. This high-
light the fact that the cycle consistency loss also acts as a recon-
struction loss. Finally, our triplet sampling strategy during training
provides a small boost.

Car/100 shots Nearest Neighbor Oracle

(a) Identity 67.60 73.59

(b) Ours 68.19 75.87
(c) Ours w/o cycle loss 52.78 59.63
(d) Ours w/o chamfer 66.21 74.31
(e) Ours w/o knn restriction 67.70 75.23

Table 3: Ablation Study:. Given a target shape T and 100 seg-
mented train samples, we select T ’s nearest neighbors S (1st col-
umn), and the oracle source shape which maximizes performances
for our approach . (2nd column). We compare (a) the identity base-
line, with (b) our approach, trained without label supervision, and
(c, d, e) its ablations. The mean IoU is reported. Results are com-
puted on the Car category.
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5.4. Hyperparameter Study

Figure 8: Hyperparameter study. Study of the influence of the cy-
cle consistency loss from not having it (absciss point "0") to having
only the cycle loss (absciss point "inf"). For each target shape, we
use the Nearest Neighbors (see 4.3) criterion to select sources from
the full training set. A voting strategy is used on the top 10 source
shapes. The mean IoU is reported

Figure 8 demonstrates once more that the cycle-consistency loss
is the pivotal insight of our method. It also outlines the stability
of the results for different weightings of our losses. Note how per-
formances are maintained even in the extreme case with only the
cycle-consistency loss. Indeed, the identity function is not a trivial
minimum of the cycle consistency loss because of the projection
step.

6. Conclusion

We have presented a method for learning a parametric transfor-
mation between two surfaces that leverages cycle-consistency as
a supervisory signal to predict meaningful correspondences. Our
method does not require an object template, can operate with-
out any inter-shape correspondences supervision, and does not as-
sume the deformation is nearly isometric. We demonstrate that
our method is able to transfer segmentation labels from a very
small number of labeled examples significantly better than state-
of-the-art methods, and match the segmentation performance when
a larger training dataset is provided.

We believe that the large gap between our performance and the
“oracle shape” which provides maximal accuracy shows that using
learned deformations to transfer labels, investigating ways to better
understand what source models should be selected and new ways to
aggregate information across multiple sources is a very promising
research direction.
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