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Abstract. We present a 3D modeling method which enables end-users
to refine or detailize 3D shapes using machine learning, expanding the ca-
pabilities of AI-assisted 3D content creation. Given a coarse voxel shape
(e.g., one produced with a simple box extrusion tool or via generative
modeling), a user can directly “paint” desired target styles represent-
ing compelling geometric details, from input exemplar shapes, over dif-
ferent regions of the coarse shape. These regions are then up-sampled
into high-resolution geometries which adhere with the painted styles.
To achieve such controllable and localized 3D detailization, we build on
top of a Pyramid GAN by making it masking-aware. We devise novel
structural losses and priors to ensure that our method preserves both
desired coarse structures and fine-grained features even if the painted
styles are borrowed from diverse sources, e.g., different semantic parts
and even different shape categories. Through extensive experiments, we
show that our ability to localize details enables novel interactive creative
workflows and applications. Our experiments further demonstrate that in
comparison to prior techniques built on global detailization, our method
generates structure-preserving, high-resolution stylized geometries with
more coherent shape details and style transitions.

Keywords: 3D detailization · Controllable 3D generation · Generative
adversarial network · High-resolution geometry

1 Introduction

Customized 3D content is becoming more widely available, driven by rapid ad-
vances in generative AI and increasing demand from computer games, AR/VR,
and e-commerce. Recently, deep generative models based on diffusion and vision-
language models have made significant waves in improving the accessibility (e.g.,
via text prompting) and ingenuity of generated content, as well as enabling
zero-shot learning. However, while effective at creating coarse content, the latest
methods along these fronts, e.g., [15, 28, 41, 47], still lack the ability to gener-
ate and precisely control high-quality geometric details. Also, their slow speed
remains a roadblock to integrating them into artists’ conventional workflows.

ar
X

iv
:2

40
9.

06
12

9v
1 

 [
cs

.C
V

] 
 1

0 
Se

p 
20

24

https://orcid.org/0009-0004-8447-0137
https://orcid.org/0000-0001-7835-1618
https://orcid.org/0000-0002-3996-6588
https://orcid.org/0000-0002-9116-4662
https://orcid.org/0000-0003-1991-119X
https://orcid.org/0009-0009-8588-1436


2 Q. Chen et al.

Décollage

Coarse	voxel Style	"painting" Ours

Fig. 1: Décollage is an art form created by “cutting/removing pieces of an original
image”1. When “painting” a style exemplar with geometric details over a region of a
coarse shape, coarse surfaces are removed to unveil a detailized version to mimic the
exemplar. We show an out-of-distribution chair-like shape detailized via style mixing ,
where five exemplars “décollaged" the coarse voxels.

In this paper, we propose a learning-based method that enables novice users
to add geometric details to a coarse 3D shape by selecting regions on it and
assigning them the styles of exemplar shapes with compelling geometric details.
Each region is upsampled and detailized by a neural network to replicate the
corresponding exemplar’s detail style, while preserving the overall structure of
the coarse input content shape. In general, when detailizing multiple regions us-
ing separate and possibly diverse style exemplars, i.e., “style mixing,” as shown
in Figure 1, the goal of our region-specific, localized 3D detailization is to pro-
duce structure-preserving and globally coherent results in terms of shape details
and part connections, across feature scales and shape categories. Style mixing
from different shape categories offers additional design freedom which can boost
the creative potential of the generated shapes without compromising structural
validity and functionality of the input content shapes, as shown in Figure 1.

Enabling localized style control via exemplar shapes is a natural content cre-
ation paradigm, which addresses both the questions of which detail to generate
and where to generate. However, the problem is technically challenging, espe-
cially with style mixing. Even when both the content and style shapes happen
to be semantically segmented, decoupled assignment of details to target areas
inevitably leads to structural inconsistencies, especially over joint regions, as the
details may not trivially mix. Besides requiring special treatment to ensure co-
herent part connections, the network also needs to have a global understanding
of the whole shape while applying detail locally. Prior methods for conditional
detailization [5, 6] are designed to deal with a single style exemplar and do not
perform well when there is significant structural dissimilarity to the content
shape. In addition, many style configurations may have never been observed
during training, leading to out-of-distribution failures: see Figure 2.

To address the above challenges, our method leverages a hierarchical back-
bone architecture for generative adversarial learning, i.e., a Pyramid GAN [12,23,
49,51]. This enables our network to capture both global structures using coarse-
level reasoning, as well as local geometric details at finer levels. Accordingly, our

1 https://en.wikipedia.org/wiki/Decollage

https://en.wikipedia.org/wiki/Decollage
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Content

Styles

(a) DECOR-GAN∗ (b) Ours

Fig. 2: DECOR-GAN∗ [6] (a) with naïve
local controllability generates discon-
nected structures and floating pieces. Our
method DECOLLAGE (b) fares much
better in preserving global structure and
generating local geometric details.

(a) (b) (c) (d)

Fig. 3: Application: detailizing shapes
from various sources including (a) extrud-
ing 2D profiles; (b) coarse voxels created
via an interactive user interface (see sup-
plementary); (c) shapes generated by text-
to-3D model; (d) simple CAD primitives.

network is trained with both a global discriminator and a local, style-conditioned
one, where we employ an adaptive α weighting to adjust the importance of the
discriminators depending on proximity to style transition regions. In addition,
we propose novel network losses to encourage structure preservation during up-
sampling. Specifically, we ensure that the coarse shape is preserved under resam-
pling at different resolutions by both downsampling and upsampling it. Finally,
since local style control requires the coarse targets to be partitioned into regions
to guide the generation, we propose several data augmentation mechanisms to
generate segmented coarse targets from detailed sources during self-supervised
training, by randomly changing their part structures, scales, and orientations.

In summary, our work offers the first method for interactive, controllable, and
localized geometry detail generation, unlike existing shape detalization works [5,
6] which only offer global style control. On the technical front, the adaptive
α weighting between discriminators has not been used in prior works, and is
essential to our interactive workflow. Although Pyramid GAN has been heavily
explored before, it alone is insufficient to tackle the challenge of style mixing.
To this end, our key contribution is the use of novel structure-preserving losses
tailored for the Pyramid architecture with discriminator adaptivity to overcome
incoherent structures. Once trained, our network enables novel interactive 3D
modeling, allowing both structure editing by end-users and automated per-region
detailization, as shown in Figure 3. This application also showcases the versatility
of our modeling paradigm through DECOLLAGE, in terms of 3D content shapes.

We conduct experiments to show that our approach performs significantly
better than relevant baselines on 3D detailization by borrowing details across
different categories of shapes. We further demonstrate that our method outper-
forms prior works on tasks they were designed to handle, i.e., a standard example-
based detailization with a single style, from the same category [6]. Lastly, we
showcase applications of our method to enable various workflows, such as creat-
ing detailed shapes from coarse labeled blocks, and detailizing coarse generated
shapes by painting style labels.
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2 Related work

While our approach might appear to tackle a similar problem to 3D voxel up-
sampling [7, 9, 10, 40, 42, 45], however, a critical distinction is that it aims to
generate new features and details. We thus review prior 3D generative models
and shape detailization techniques.

3D generative models. Various 3D generative models have been introduced for
point clouds [2,53], voxels [11,50], neural implicit functions [8,34,39], neural ra-
diance fields [28,36,41], and hybrid representations [15,19,26]. These approaches
are predominantly empowered by variational autoencoders (VAEs) [25], genera-
tive adversarial networks (GANs) [16], or diffusion probabilistic models [18,46].

Despite significant progress in this field, very few works offer controllable and
interactive 3D shape generation for modeling applications. Notably, Point-E [38],
Shap-E [21], and One-2-3-45 [31] can generate a 3D model from text or single
image inputs, with processing times ranging from 30 seconds to over a minute.
DECOR-GAN [6] and ShaDDR [5] can efficiently produce a detailed 3D shape
from coarse voxel inputs, taking less than 1 to 2 seconds. Although ShaDDR
provides interactivity during generation, it only offers global style control. Our
work builds upon DECOR-GAN to deliver the first controllable and localized in-
teractive modeling experience, while introducing new formulations and technical
contributions that enable local style control and improve robustness in handling
coarser and out-of-distribution inputs.

3D shape detailization. Apart from classic methods that apply displacement
maps or volumetric textures [22, 37] on the surfaces to represent geometric de-
tails, recent methods have been proposed to perform local geometric operations
on a coarse mesh to synthesize surface details. Berkiten et al. [3] employs met-
ric learning to transfer displacement maps from a high-quality 3D mesh to a
coarse mesh. Hertz et al. [17] learns geometric texture from a single reference 3D
mesh and is able to apply the learned texture to a new shape. Neural Subdivi-
sion [29] also learns local geometric features and is able to transfer them via mesh
subdivision. Leveraging differentiable rendering of meshes, Paparazzi [30] and
Text2Mesh [35] can generate geometric details on the mesh surface conditioned
on the style of a reference image or input text, respectively. 3DStyleNet [52]
transfers geometric and texture styles from one shape to another. However, none
of the aforementioned methods is capable of altering the topology of the coarse
mesh, therefore restricting the range of geometric styles they can synthesize.

Other methods aim to synthesize geometric details by replicating local patches
from a reference shape, thereby overcoming the topology constraint. Inspired by
image quilting [13], mesh quilting [55] can detailize the surface of a coarse mesh
by copying, deforming, and stitching local patches of a given geometric texture
patch. SketchPatch [14] adopts a PatchGAN [20] discriminator to mimic the local
style of a reference image in order to stylize plain solid-lined sketches. DECOR-
GAN [6] similarly utilizes PatchGAN for generating detailed voxel shapes from
input coarse voxels, with the geometric style of the generated shape copied from
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Fig. 4: Network architecture. Conditioned on a set of style codes associated with each
segmented part, the network upsamples the coarse content voxel with part labels into
detailed geometries in multiple resolutions. For each upsampling level j, the discrimina-
tor enforces the local patches of each part in the upsampled geometry to be plausible
with respect to the styles they are conditioned on. The structure-preserving losses
Lj

down and Lj
up enforce the structure of the output to be consistent with the input.

one detailed reference voxel model. ShaDDR [5] improves the generated geometry
of [6] by leveraging a 2-level hierarchical GAN, and introduces texture genera-
tion. DMTET [44] can detailize a coarse voxel shape into a detailed mesh through
differentiable marching tetrahedra. While the ability to generate arbitrary topol-
ogy is desirable, it also comes with drawbacks. For instance, DECOR-GAN can
synthesize impressive patterns, yet it is prone to producing disconnected parts
and redundant floating pieces; see Figure 2. Our method effectively addresses
this issue via novel structure-preserving losses and adaptive α weighting of style
and global discriminators.

Hierarchical GANs. The pyramid structure of our network architecture draws
inspiration from hierarchical GANs [12, 24, 48, 54], a structure widely employed
in various tasks, including image [43] and 3D [23, 49, 51] generation. Multi-level
generation based on different scales has been applied outside the scope of GANs
to facilitate generation of structurally diverse shapes [27]. We apply hierarchical
GAN and devise novel loss functions to generate shapes that are both globally
plausible and locally detailed.

3 Method

Our method requires only a few (e.g., 16) detailed “style” shapes S = {s1, . . . , sN}
with varying geometric styles as training data, where each style shape si is a
2K × 2K × 2K high-resolution voxel grid. We also assume all the shapes are co-
segmented into meaningful parts, so that each voxel v ∈ si is associated with a
part label P (v). After training, given a 2k×2k×2k coarse voxel grid c where each
voxel v ∈ c is associated with a part label P (v) and a style S(v) ∈ {1, . . . , N}, our
model can generate a high-resolution, detailed shape that has the overall struc-
ture of the input c, while the local geometric detail in the region corresponded
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to a input voxel v follows the style exhibited in sS(v). In our experiments, we
use k = 4 and K = 8.

In this section, we first introduce our network architecture - a pyramid GAN
with (K − k) levels, in Sec. 3.1. Next, in Sec. 3.2, we apply masked adversarial
losses to ensure that the generated geometry follows the styles specified by the in-
put voxels, while an adaptive α weighting scheme is developed to promote proper
connectivity in style transition regions. We also devise two novel loss functions
tailored for our pyramidal network architecture to preserve the structure of the
input coarse voxels. Our method requires coarse voxels c with diverse structures
and part segmentation during training. Therefore, in Sec. 3.3, we propose a data
augmentation technique to take full advantage of the N segmented style shapes
in S and use them to synthesis the coarse voxels for our training.

3.1 Network architecture

Our network is shown in Figure 4. For each style shape si, we associate it with
an optimizable 8-dimensional latent code zi to represent its geometric style; see
Figure 4 top-left. The input to our model is a coarse voxel grid c of resolution
2k, where each voxel v contains its binary occupancy O(v), part label P (v) and
a latent code zS(v) corresponding to its designated style S(v); see in Figure 4
bottom-left. Our model contains a backbone and a pyramid of generator networks
Gj that upsample the input into occupancy voxels of size 2j , where j ∈ {k +
1, . . . ,K}. Each Gj doubles the size of its input; see Figure 4 bottom. Both the
backbone and the generators are 3D convolutional neural networks (CNNs).

Correspondingly, a pyramid of 3D CNN PatchGAN [20] discriminators Dj

are employed to ensure that the shape generated at each resolution level is
plausible; see Figure 4 top-right. Each Dj inputs a generated occupancy grid
at 2j resolution and outputs a voxel grid of the same resolution, while each
output voxel has N + 1 channels. The first N channels of an voxel v in the
discriminator output represent the likelihood that the local patch covered by v’s
receptive field is from one of the N style shapes, thus the first N channels are
style-specific discriminators. The (N + 1)-th channel can be viewed as a global
discriminator that evaluates the likelihood of the patch being plausible for a 3D
shape. We denote the style-specific discriminators as Dj

i for level j and style i,
and the global discriminator as Dj

∗.
A main advantage of pyramid GANs is that we can have different receptive

fields at different levels, so that the coarse levels only focus on generating coher-
ent structures, while the fine levels pay more attention to generating plausible
details. This provides better generalizability to inputs with drastically differ-
ent structures compared to the training style shapes. We set the discriminator
receptive fields to 73 and 93 for the first two levels and 183 for the rest.

3.2 Loss functions

Reconstruction loss. Given a high-resolution style shape si, we downsample it
to a lower resolution and use it as an input coarse shape. We can directly apply a
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reconstruction loss as we have the ground truth (GT). Denote the downsampled
shape at resolution 2j as sji , for each style i and resolution level j, we have

Lrecon = Ev(G
j(ski )[v]−O(sji [v]))

2, (1)

where v iterates the indices of all voxels, Gj(·) is the output voxel grid of the gen-
erator, and s[v] queries the voxel in s at index v. Note that the style S(ski [v]) = i.
Adversarial loss. We do not have the GT detailed shape for an arbitrary coarse
shape c. Thus we resort to the discriminators to supervise shape generation. In
addition, the geometric style of the generated shape should respect the desig-
nated styles S(v) in the input voxels. Hence, we have the following adversarial
loss to train the generators, which is a masked version of the LSGAN [33] loss,

LGAN = Ev((D
j
∗(G

j(c))[v]− 1)2 + α · (Dj
S(c[v])(G

j(c))[v]− 1)2), (2)

where Dj(·) is the output voxel grid of the discriminator, and α is a parameter
to control the influence of the style-specific discriminators. Losses to train the
discriminators can be found in the supplementary.
Adaptive α weighting. Setting α to a larger value can make the generated
shape more stylistic in the region near v with respect to the style S(c[v]), yet
it can make the region less plausible and less coherent with other regions, since
the influence of the global discriminator has been tuned down. On the other
hand, setting α to a small value lets the generator generate structurally coherent
but style-less shapes. Our observation is that the regions near the transition
boundary where two parts of different styles meet are the most problematic,
since the geometries in these regions are unlikely to be observed in our training
examples with single styles. Therefore, we develop a novel strategy to set α
adaptively for each voxel: if a voxel is near a transition boundary (within 2
voxels), we will set a small α for that voxel, e.g., α1 = 0.1; otherwise, we set a
larger α, e.g., α2 = 0.5.
Structure-preserving losses. Finally, to make the generated shape respect the
structures presented in the input coarse voxels, we propose two novel structure-
preserving losses. The downsampling loss ensures that if we downsample the
generated shape at level j + 1 from resolution 2j+1 to 2j , the result agrees with
the generated shape at level j, or the input shape if j = k.

Ldown = ||ϕ↓(G
j+1(c))−��∇(Gj(c))||22, (3)

where ϕ↓ is the max-pooling operator that downsamples the input by a factor of
2; ��∇ is the stop-gradient operator to prevent the generated shape in level j + 1
from negatively affecting the generated shape in level j. Similarly, we have an
upsampling loss to ensure the upsampled result of level j agrees with the shape
at level j + 1.

Lup = ||Gj+1(c)−��∇(ϕ↑(G
j(c)))||22, (4)

where ϕ↑ upsamples the input by a factor of 2 via nearest neighbor.



8 Q. Chen et al.

Fig. 5: Augmentation examples of different categories. For each category, we show the
original style shape in the first row, the corresponding augmented style shape in the
second row left, and downsampled as coarse shapes for training in the second row right.

The final loss is a sum of the above loss terms:

L = Lrecon + LGAN + γ1 · Ldown + γ2 · Lup. (5)

We set γ1 = γ2 = 10 in our experiments.

3.3 Data augmentation

From few detailed and segmented style shapes, we synthesize an arbitrary num-
ber of coarse voxels with diverse structures and part segmentation for training,
as shown in Figure 5. To create a coarse voxel, we choose a random style shape si
and randomly scale it in x, y, and z directions. For some categories such as plant,
we further perform random rotation and combine multiple shapes to have more
geometric variations. We downsample the augmented shapes into 2k resolution
as coarse shapes for training. Note that all the style shapes are co-segmented,
therefore we also obtain segmentation in the resulting coarse voxels. At this
point, we can randomly assign different styles to different segmented parts.

3.4 Implementation details

Similar to DECOR-GAN [6], we apply a Gaussian filter with σ = 1 on each
style shape to convert its binary occupancy voxels into a smoother and more
continuous scalar grid for the sake of better optimization. Training our model
takes about 30 hours on a single NVIDIA 3090Ti GPU for k = 4 and K = 8.
After training, generating a detailed shape only takes less than a second. We
extract the mesh surfaces using Marching Cubes [32].

4 Experiments

In this section, we first evaluate our proposed method in single-category single-
style shape detailization and compare with other detailization methods in Sec. 4.1.
Next, we demonstrate that our method can generate novel 3D shapes with better
localized style control in multi-category style mixing in Sec. 4.2, and perform ab-
lation study in Sec. 4.3. We also show several applications including interactive
editing in Sec. 4.4.
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Datasets. We conduct experiments on six shape categories: 16 chairs, 16 tables,
and 5 plants from ShapeNet [4]; and 5 buildings, 3 cakes, and 3 crystals from
3D Warehouse [1] under CC-BY 4.0. For each style shape, we obtain binary
occupancy voxels and manually annotate the part labels for training. We segment
each chair into five parts: back, seat, armrest, leg, and stretcher. Tables are
labeled into two parts: tabletop and legs. A plant is labeled into pot and leaf. A
building is labeled into the roof and main body. Cakes and crystals are segmented
into bottom and top parts. All the training style shapes can be found in the
supplementary. While increasing the number of style shapes is possible, we aim
to demonstrate that our proposed method has robust generalizability to coarse
voxels with drastically different and complex structures, even when trained on
a very limited number of style shapes.

Evaluation metrics. For quantitative evaluation, we follow DECOR-GAN [6]
and adopt the following metrics. Strict-IOU is to measure the Intersection over
Union (IOU) between the downsampled output voxels and the input voxels, to
evaluate how well the generated shape respects the structures in the input shape.
Loose-IOU is a relaxed version of Strict-IOU to compute the proportion of oc-
cupied voxels in the input that are also occupied in the downsampled output.
LP-IOU and LP-F-score are to measure the percentage of local patches in the
generated shape that are “similar” (according to IOU or F-score) to at least one
local patch in the style shapes. Higher LP-IOU and LP-F-score indicate that
the local details of the generated shapes are more similar to the local details
of the style shapes, thus the generated shapes are deemed to be more locally
plausible. Cls-score is to evaluate the overall plausibility of the generated shapes
by training a classifier network to distinguish between the rendered images of
the generated shapes and those of the real shapes and recording the mean clas-
sification accuracy. More details can be found in the supplementary.

4.1 Single-category detailization

We first qualitatively and quantitatively compare our method with DECOR-
GAN [6] and ShaDDR’s geometry generator [5] on single-category single-style
shape detailization. We use the data in DECOR-GAN and train individual mod-
els for different categories for fair comparisons. We report the results on chair
category due to page limit; other categories can be found in the supplementary.

We show quantitative comparison in Table 1 and qualitative results in Fig-
ure 6. DECOR-GAN and ShaDDR are likely to generate disconnected parts,
especially in the joint regions, e.g., where armrests meet seats or backs. Their
results in Figure 6 frequently show fragmented or disconnected parts. In contrast,
our method can produce significantly higher-quality upsampled geometry with
better connectivity. Moreover, our generated shapes better preserve the struc-
tures in the input voxels. An example is indicated by arrows in Figure 6, where
the armrest of our generated chair closely follows the shape of its coarse content
voxels, while the results of other methods fail to follow. This is also reflected by

https://creativecommons.org/licenses/by/4.0/
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Content

Style →

Ours DECOR
-GAN

ShaDDR Ours DECOR
-GAN

ShaDDR Ours DECOR
-GAN

ShaDDR Ours DECOR
-GAN

ShaDDR

Fig. 6: Single-category detailization on chair category. We show the input content
shapes on the left and style shapes on top. Please zoom in to observe the details.

our higher Strict- and Loose-IOU in Table 1. Our method also generates better
local details, as reflected by higher LP-IOU and LP-F-score.

Table 1: Quantitative results of single cat-
egory detailization on the chair category.

Strict- Loose- LP- LP-F- Cls-
IOU ↑ IOU ↑ IOU ↑ score ↑ score ↓

DECOR-GAN 0.581 0.753 0.517 0.906 0.533
ShaDDR 0.596 0.760 0.563 0.907 0.527
Ours (Pyramid full) 0.748 0.908 0.591 0.914 0.506

Table 2: Quantitative results of multi-
category detailization on chair and table.

Strict- Loose- LP- LP-F- Cls-
IOU ↑ IOU ↑ IOU ↑ score ↑ score ↓

DECOR-GAN∗ 0.609 0.839 0.509 0.961 0.567
ShaDDR∗ 0.611 0.854 0.496 0.933 0.549
Ours w/o part labels 0.747 0.900 0.508 0.969 0.533
Ours w part labels 0.750 0.906 0.513 0.977 0.518

4.2 Multi-category style mixing

We train one single model with k = 4 and K = 8 for the chair and table
categories and another with k = 4 and K = 8 for the plant, building, cake and
crystal categories. Since the original DECOR-GAN and ShaDDR are not able
to perform style mixing during geometry detailization, we modify the training
procedure of DECOR-GAN and ShaDDR by assigning different styles to different
regions of the input coarse voxels for fair comparisons. We denote these two
baselines as DECOR-GAN∗ and ShaDDR∗.

We show the style mixing results in Figure 7 and 8. DECOR-GAN∗ and
ShaDDR∗ fail to produce coherent and connected structures for out-of-distribution
content shapes with different style combinations. Our method not only demon-
strates improved generalization to novel coarse content shapes, but also produces
better geometric details with smooth style transition. Our method also outper-
forms other methods quantitatively, as shown in Table 2. More qualitative results
can be found in the supplementary material.

4.3 Ablation study

In this section, we validate the effectiveness of our pyramid GAN structure and
structure-preserving losses. In Table 3 and Figure 9, we compare several vari-
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Content
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Ours w
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Ours w/o
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DECOR
-GAN∗

ShaDDR∗ Ours w
part labels

Ours w/o
part labels

DECOR
-GAN∗

ShaDDR∗

Fig. 7: Multi-category style mixing results on chair and table categories. We show the
input coarse voxels with style labels on the left. The corresponding style shapes for the
colored style labels are shown on top. Please zoom in to observe the details.

ations of our proposed method in single-category single-style setting. (1) Pyra-
mid vanilla, in which we only use a pyramid GAN structure without structure-
preserving losses, i.e. γ1 = γ2 = 0 in Equation 5. In this setting, we adopt
DECOR-GAN’s design for preserving the content structure, which are non-
differentiable masks applied to the generated voxels to cut off all the voxels
outside the valid region defined by the coarse input voxels. We observe con-
nectivity issues as well as floating pieces in the generated shape, as shown in
Figure 9 (a). (2) Pyramid w Lup, in which we remove the masks and add the
upsampling loss to Pyramid vanilla, i.e., γ1 = 0, γ2 = 10. The upsampling loss
can better preserve the overall structure, while the floating pieces remain, as
shown in Figure 9 (b). (3) Pyramid w Ldown, in which we remove the masks
and add the downsampling loss to Pyramid vanilla, i.e., γ1 = 10, γ2 = 0. The
downsampling loss can also help preserve the overall structure, and it effectively
eliminates the floating pieces. Yet it tends to miss thin structures, as shown in
Figure 9 (c). (4) Our proposed method, Pyramid full, where γ1 = γ2 = 10.0. In
this setting, the generated shapes exhibit better connectivity and better adher-
ence to the global structure, as shown in Figure 9 (d). The quantitative results
in Table 3 also show that our full model has the best performance.

We also perform a more thorough ablation study of each component in the
multi-category style mixing setting, as shown in Table 4 and Figure 10 (left).
Note that adaptive α is only used in the multi-category style mixing setting. By
leveraging Pyramid architecture ((a) vs. (b)), the overall structure of the output
is significantly improved. Both Ldown and Lup further help refine the overall
structure where Ldown can effectively eliminate the floating pieces and Lup can
improve thin structures ((c) vs. (d) and (g) vs. (h)). This conclusion is also
consistent with the ablation study in the single-category detailization setting.
The adaptive α weighting can effectively improve the boundary transition where
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Styles Content Ours w
part labels

Ours w/o
part labels

DECOR-GAN∗ ShaDDR∗

(a)

(b)

Fig. 8: Multi-category style mixing results on plant, building, cake, and crystal cate-
gories. For each group, e.g., (a), we show two style shapes in the first column, coarse
input shapes with style labels in the second column, and results in the remaining
columns. Please zoom in to observe the local geometric details.

Content

Style

vanilla w Lup w Ldown full

(a) (b) (c) (d)

Fig. 9: Qualitative ablation study of the
proposed structure-preserving losses in the
single-category setting.

Table 3: Quantitative ablation study of
the proposed structure-preserving losses in
the single-category setting.

Strict- Loose- LP- LP-F- Cls-
IOU ↑ IOU ↑ IOU ↑ score ↑ score ↓

(a). Pyramid vanilla 0.578 0.819 0.508 0.868 0.593
(b). Pyramid w Lup 0.705 0.873 0.547 0.883 0.550
(c). Pyramid w Ldown 0.730 0.889 0.564 0.892 0.558
(d). Pyramid full 0.748 0.908 0.591 0.914 0.506

two different styles meet, e.g. the armrest is well-connected to the seat and the
stretcher is well-connected to the leg ((c) vs. (g), (d) vs. (h) and (f) vs. (i)).

In addition, we perform an ablation study on the adaptive α weighting scheme
described in Sec. 3.2 with different α values. Figure 10 (right) shows qualitative
results of setting the parameter α1 to 0.1, 0.3 and 0.5 for voxels near the transi-
tion boundary and α2 to 0.5 for the rest regions. Setting α1 = α2 = 0.5 can be
considered equivalent to not adaptively adjusting the α. By using a smaller α1,
the region where two different styles meet has a smoother style transition, e.g.
the armrest is well-connected to the seat in the last column of Figure 10 (right).

We further stress test our method by removing part labels from the input
to the network. That is, the users need not specify which part of each exemplar
should supply details: the network needs to automatically decide this based
on the geometry of the selected region on the coarse shape. Therefore, no co-
segmentation is needed in this setting, and we only use per-shape segmentation
to assign styles to each local region of the coarse input shape during training.
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Table 4: Quantitative ablation studies of Pyramid structures (P), structure-preserving
losses (Ldown and Lup) and adaptive α weighting (adp-α) in the multi-category chair
and table style mixing setting.

Strict-IOU ↑ Loose-IOU ↑ LP-IOU ↑ LP-F-score ↑ Cls-score ↓

(a). P (×) (DECOR-GAN∗) 0.621 0.849 0.261 0.939 0.638
(b). P (

√
), Ldown (×), Lup(×), adp-α (×) 0.661 0.880 0.260 0.941 0.645

(c). P (
√

), Ldown (
√

), Lup(×), adp-α (×) 0.713 0.894 0.274 0.949 0.586
(d). P (

√
), Ldown (×), Lup(

√
), adp-α (×) 0.705 0.889 0.271 0.952 0.592

(e). P (
√

), Ldown (×), Lup(×), adp-α (
√

) 0.688 0.882 0.263 0.955 0.568
(f). P (

√
), Ldown (

√
), Lup(

√
), adp-α (×) 0.753 0.905 0.281 0.963 0.533

(g). P (
√

), Ldown (
√

), Lup(×), adp-α (
√

) 0.721 0.904 0.279 0.960 0.529
(h). P (

√
), Ldown (×), Lup(

√
), adp-α (

√
) 0.724 0.898 0.277 0.952 0.547

( i). P (
√

), Ldown (
√

), Lup(
√

), adp-α (
√

) 0.761 0.913 0.282 0.968 0.527

Content

Styles (a) (b) (c) (d)

(e) (f) (g) (h) (i) Content

Styles

α1 = 0.5
α2 = 0.5

α1 = 0.3
α2 = 0.5

α1 = 0.1
α2 = 0.5

Fig. 10: (Left) Qualitative ablation studies of Pyramid structures (P), structure-
preserving losses (Ldown and Lup) and adaptive α weighting (adp-α) in the multi-
category chair and table style mixing setting. The configurations of different models
used in (a-i) can be found in Table 4. Zoom in to observe the details. (Right) Qual-
itative ablation study of different adaptive α values. The input coarse voxel and style
shapes are shown on the left. The zoom-ins are shown on the top. α1 is set for voxels
near the transition boundary and α2 for the rest.

Figure 11 visually compares inputs with vs. without part labels. Even with-
out part labels, our method can generate reasonable results with only slightly
worse local details, which may be attributed to the network leveraging certain
capabilities to identify selected regions. This is also reflected by slightly lower
LP-IOU and LP-F-score compared to input with part labels in Table 2.

4.4 Application

Our method can be applied to detailize shapes from various sources, as shown in
Figure 3. (a) We can detailize coarse shapes that are easily obtainable by extrud-
ing 2D profiles, such as fonts. (b) We develope an interface for users to model
coarse voxels and assign style labels interactively. Please see our supplementary
video for a real-time, interactive demo. (c) We ran an off-the-shelf text-to-3D
model to obtain a “C-shaped cake”. Then we remove the bottom plane of the
generated shape and apply our method on its downsampled voxels to obtain a
detailed cake. (d) We can also detailize shapes that are created using simple
primitives such as two boxes. For each shape, we apply the styles of two cakes at
different regions, which may not correspond to semantic parts. Note that we offer
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Content

Styles

with
part labels

without
part labels

Content

Styles

with
part labels

without
part labels

Fig. 11: Ablation study of input with vs. without part labels on building-cake and
chair-table style mixing. By leveraging part labels as additional input, the network can
generate more details with more natural connections between different regions.

the first method for interactive controllable and localized detail generation, un-
like ShaDDR [5] which only offers global style control. This may enable creative
modeling, such as the building and plant mixing in Figure 12 (a).

5 Conclusion, discussion, and future work

(a) Creative
modeling.

(b) A failure
case.

Fig. 12: Examples of creative
modeling and a failure case.

We present the first exemplar-based genera-
tive model for 3D detailization which offers lo-
cal control, interactivity, and generalizability to
out-of-distribution coarse structures. Our novel
structure-preserving losses, along with the global
discriminator and spatially adaptive style adjust-
ment, lead to clear improvements over current
detailization methods and enable coherent style
transition even when mixing diverse exemplars.

To generate better local geometric details, we currently assume that a mean-
ingful co-segmentation is available for all style shapes. This may limit the de-
tailization to only coarse-level structures and also prevent style transfer which
breaks the semantic barrier. Our method adopts the occupancy voxel represen-
tation for 3D shapes and relies on 3D CNNs to perform upsampling, which can
limit the resolution of the final generated shapes. For example, our maximum
output resolution is 2563, which may not be sufficient to represent finer geomet-
ric details, such as the tips of the crystals in Figure 8 (b). In our experiments, we
found mixing styles for significantly different geometries, e.g., the failure case of
mixing chair and plant in Figure 12 (b), can often lead to undesirable artifacts.
This is due to the significant differences in the local structure of the coarse shape
and the style shapes. For example, the chair back cannot be detailed into a plant
because such a shape does not exist in either the content or the style shapes.
Mixing these styles requires a deeper understanding of semantics and aesthetics.

As for future work, we would like to transfer non-homogeneous shape details
onto non-homogenous coarse structures. The use of diffusion models for voxel
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upsampling and the integration with large language and vision-language models
for geometry and texture detailization are both worth exploring.
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DECOLLAGE: 3D Detailization by Controllable,
Localized, and Learned Geometry Enhancement

(Supplementary Material)

A Data and code

We show the style shapes for training chair and table style mixing in Figure 14,
and plant, building, cake and crystal in Figure 15. We also provide the ready-to-
use data and code in the supplementary. Code will be released upon acceptance.

B Loss function

We follow the notations defined in the main paper and provide the discriminator
loss.
Discriminator loss. For any style shape s and any coarse shape c with desig-
nated styles S(v), the discriminator loss is the sum of the global discriminator
Dj

∗’s loss and the style-specific discriminators Dj
i ’s loss:

LDj = LDj
∗
+ LDj

style
(6)

where

LDj
∗
= Ev((D

j
∗(s

j)[v]− 1)2 + (Dj
∗(G

j(c))[v])2) (7)

LDj
style

= Ev((D
j
S(s[v])(s

j)[v]− 1)2

+ (Dj
S(c[v])(G

j(c))[v])2) (8)

C Evaluation metrics

We use the following metrics from DECOR-GAN [6] to quantitatively evaluate
the quality of the generated shapes on both single-category detailization and
multi-category style mixing tasks.
Strict-IOU and Loose-IOU. Strict-IOU is to measure the Intersection over
Union (IOU) between the downsampled output voxels and the input voxels,
to evaluate how well the generated shape respects the structures in the input
shape. Loose-IOU is a relaxed version of Strict-IOU to compute the proportion of
occupied voxels in the input that are also occupied in the downsampled output.
LP-IOU and LP-F-score. LP-IOU and LP-F-score are to measure the per-
centage of local patches in the generated shape that are “similar” (according to
IOU or F-score) to at least one local patch in the style shapes. Higher LP-IOU
and LP-F-score indicate that the local details of the generated shapes are more
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similar to the local details of the style shapes, thus the generated shapes are
deemed to be more locally plausible. We mark the two patches as “similar” if the
IOU (F-score) is above 0.95. To reduce the computational complexity, we sample
123 patches in a voxel model, a size slightly smaller than the receptive field of
the discriminator. Additionally, We only sample surface patches with at least
one occupied voxel and one unoccupied voxel in their central 23 areas to avoid
sampling featureless patches located far inside or outside the shape. We sam-
ple 1000 patches from each testing shape and compare them with all potential
patches in the detailed shapes.
Cls-score. Cls-score is to evaluate the overall plausibility of the generated
shapes by training a classifier network to distinguish between the rendered im-
ages of the generated shapes and those of the real shapes and recording the
mean classification accuracy. We train a ResNet using high-resolution voxels
(from which content shapes are downsampled) as real samples and our gener-
ated shapes as fake samples. For each sample, we randomly render 24 images
with a resolution of 2562. The images are randomly cropped to 10 small patches
with a resolution of 642 for training.
Evaluation details. For IOU and LP, we evaluate 320 generated shapes (20
contents × 16 styles) since they are computationally expensive. For Cls-score, we
evaluate 1600 generated shapes (100 contents × 16 styles). For multi-category
style mixing, we generate 16 style sets, each containing 5 random style combi-
nations.

D More results on single category detailization

We show qualitative and quantitative results on the building category in Figure
16 and Table 5, and the plant category in Figure 16 and Table 6.

Table 5: Quantitative of single-category
detailization on the building category.

Strict- Loose- LP- LP-F- Cls-
IOU ↑ IOU ↑ IOU ↑ score ↑ score ↓

DECOR-GAN 0.693 0.973 0.429 0.662 0.598
ShaDDR 0.601 0.957 0.425 0.633 0.633
Ours 0.732 0.987 0.442 0.648 0.592

Table 6: Quantitative of single-category
detailization on the plant category.

Strict- Loose- LP- LP-F- Cls-
IOU ↑ IOU ↑ IOU ↑ score ↑ score ↓

DECOR-GAN 0.417 0.728 0.385 0.769 0.648
ShaDDR 0.217 0.636 0.220 0.522 0.673
Ours 0.419 0.757 0.358 0.771 0.629

E More results on multi-category style mixing

We show additional qualitative results on the chair and table style mixing in
Figure 17 and 18, and plant, building, cake and crystal in Figure 19 and 20.
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F More analysis of the generative capability

Our network design and losses (e.g., structure preservation) train the model
to pick reasonable/plausible details to generate for each part regardless of its
spatial location, as unreasonable/implausible details will lead to sub-optimal
losses. This contributes to the fact that most of our results exhibit transfers
between structurally matched parts, which, under normal circumstances, would
also represent parts that share similar spatial locations (e.g., chair back to back).

That said, our generative capability is certainly not constrained by the rel-
ative spatial positions of the parts. Please see Fig. 13 for additional examples.
Specifically, Figs. 13 (a-c) show that our model can generate armrests in various
positions, even on just one side (b). Fig. 13 (d) shows a result of applying the
style of tabletop to the chair back and (e) shows a chair back style detailized
both in the middle of and in front of the seat, even between chair legs.

Even when part labels are removed from the input, our method is still able
to generate reasonable geometry that respects both the style shape and the
structure of the coarse voxel shape, as shown in Fig. 13 (f).

Note that changing style guidance from one to another within the training
style shapes does not require retraining. On the other hand, the model needs to
be retrained to include new style shapes that are unseen during training.

G GUI demo

After the user assigns styles to each region, our method takes less than a second
(∼0.3s) to generate style-mixing results. We provide a video of our GUI demo
powered by the network with part labels version in the supplementary.

Content

Styles groups (a) (b) (c) (d) (e) (f)

Fig. 13: (a)-(e) with part labels, (f) without part labels. Please zoom in to observe
the local geometric details.
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Fig. 14: The segmented training style shapes of chair and table categories. We segment
the chair into five parts: back, seat, leg, armrest and stretcher and the table into two
parts: tabletop and leg.
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Fig. 15: The segmented training style shapes of plant, building, cake and crystal cat-
egories. We segment the plant into two parts: pot and leaves, the building into two
parts: main body and roof, the cake and crystal into two parts: bottom and top.
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Content

Styles →

Styles →

Ours DECOR-

GAN

ShaDDR Ours DECOR-

GAN

ShaDDR Ours DECOR-

GAN

ShaDDR

Fig. 16: Single-category detailization on building and plant categories. For each cate-
gory, we show the input content shapes on the left and style shapes on top.
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Content

Styles
groups

→

Ours w
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Ours w/o
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ShaDDR∗ Ours w

part labels

Ours w/o
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DECOR
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ShaDDR∗

Fig. 17: Multi-category style mixing results on chair and table categories. We show
the input coarse voxels with style labels on the left. The corresponding style shapes for
the colored style labels are shown on top. Please zoom in to observe the local geometric
details.
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Content

Styles
groups

→

Ours w
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Ours w/o

part labels

DECOR

-GAN∗
ShaDDR∗ Ours w
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Ours w/o

part labels

DECOR

-GAN∗
ShaDDR∗

Fig. 18: Multi-category style mixing results on chair and table categories. We show
the input coarse voxels with style labels on the left. The corresponding style shapes for
the colored style labels are shown on top. Please zoom in to observe the local geometric
details.
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Styles Content Ours w
part labels

Ours w/o
part labels

DECOR-GAN∗ ShaDDR∗

(a)

(b)

(c)

(d)

Fig. 19: Multi-category style mixing results on plant, building, cake, and crystal cat-
egories. For each group, e.g., (a), we show two style shapes in the first column, coarse
input shapes with style labels in the second column, and results in the remaining
columns. Please zoom in to observe the local geometric details.
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Styles Content Ours w
part labels

Ours w/o
part labels

DECOR-GAN∗ ShaDDR∗

(a)

(b)

(c)

(d)

Fig. 20: Multi-category style mixing results on plant, building, cake, and crystal cat-
egories. For each group, e.g., (a), we show two style shapes in the first column, coarse
input shapes with style labels in the second column, and results in the remaining
columns. Please zoom in to observe the local geometric details.
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