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Figure 1: We present GEM3D, a neural generative model able to (a) synthesize skeleton-based representations, or in other
words, medial abstractions (in red), and surfaces (in green) that follow the structure and topology information encoded in
the skeletons. GEM3D can also be used in various applications, such as (b) reconstructing topologically complex surfaces, (c)
generating diverse shape samples following a given skeleton, and (d) generating surfaces from novel, user-specified skeletons.

ABSTRACT
We introduce GEM3D 1 – a new deep, topology-aware generative
model of 3D shapes. The key ingredient of our method is a neural
skeleton-based representation encoding information on both shape
topology and geometry. Through a denoising diffusion probabilistic
model, our method first generates skeleton-based representations
following the Medial Axis Transform (MAT), then generates sur-
faces through a skeleton-driven neural implicit formulation. The
neural implicit takes into account the topological and geometric
information stored in the generated skeleton representations to
yield surfaces that are more topologically and geometrically accu-
rate compared to previous neural field formulations. We discuss
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applications of our method in shape synthesis and point cloud re-
construction tasks, and evaluate our method both qualitatively and
quantitatively. We demonstrate significantly more faithful surface
reconstruction and diverse shape generation results compared to
the state-of-the-art, also involving challenging scenarios of recon-
structing and synthesizing structurally complex, high-genus shape
surfaces from Thingi10K and ShapeNet.
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1 INTRODUCTION
Automated or semi-automated 3D shape synthesis is a significant
and challenging problem in geometric modeling, with wide-ranging
applications to computer-aided design, fabrication, architecture, art,
and entertainment. While early work in this space primarily fo-
cused on handwritten models [Merrell et al. 2010; Musialski et al.
2013; Prusinkiewicz and Lindenmayer 1990], subsequent work em-
ployed statistical learning to infer generative design principles from
data [Fisher et al. 2011; Kalogerakis et al. 2012]. In recent years, a
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variety of approaches have developed deep neural network-based
architectures for 3D synthesis [Chaudhuri et al. 2020; Patil et al.
2020; Shi et al. 2023; Xu et al. 2023].While thesemethods can capture
diverse macro-level appearances, they rarely model shape struc-
ture or topology explicitly, relying instead on the representational
power of the network to generate plausible-looking voxel grids [Liu
et al. 2017], point clouds [Achlioptas et al. 2018a], meshes [Dai and
Nießner 2019], or implicit fields [Chen and Zhang 2019]. Since 3D
networks are hampered by the additional resource overheads in-
curred by the extra dimension compared to 2D image generation
networks, they often struggle to model fine detail and connectivity.
Some approaches model part layouts [Li et al. 2017], but are limited
in the complexity of the structures they can generate.

At the same time, these prior 3D synthesis methods rarely give
artists flexible, precise control. They act more as black boxes for un-
conditional generation, or reconstruction from images or 3D scans.
Recent methods introduce synthesis based on text prompts [Lin
et al. 2023; Poole et al. 2023], with remarkable results but only high-
level, global control via prompt engineering. 3D character artists
have long been accustomed to posing skeleton rigs for accurate
character configuration. However, such direct local control and
interpretability through intuitive abstractions has had limited suc-
cess in general 3D shape synthesis. Approaches without explicit
structural modeling lack the ability to specify a particular desired
topology, e.g. a chair with a particular slat configuration in the
back. On the other hand, approaches that do model part-level struc-
ture are restricted to simple topologies defined by a few coarse
primitives and cannot model complex fretwork or ornamentation.

We are interested in realistic 3D shape generation that accurately
models complex topological and geometrical details, and supports
more interpretable control of shape structure and geometry. To
achieve this, we build upon three key insights: (1) topological detail
can often be captured in a “skeletal abstraction”, like that obtained
by a medial axis transform [Tagliasacchi et al. 2016], which serves
as a simplified structural proxy for the shape, even in the absence
of meaningful part decompositions; (2) these abstractions can be
synthesized with generative methods [Karras et al. 2022], predicted
from sparse point clouds [Nie et al. 2020; Yin et al. 2018], or created
manually by an artist, and need not be perfect since they are sim-
ply intermediate representations; and (3) each abstraction can be
decoded into realistic surfaces by another trained model.

Our approach implements the surface generation step by infer-
ring and assembling a collection of locally-supported neural implicit
functions, conditioned on the skeletal abstraction. We draw inspi-
ration from recent work in this area which associates a latent code
with each 3D point in a sparse set, and generates a local implicit
from a latent grid [Zhang et al. 2022]. The mixture of these im-
plicits defines the overall synthesized shape, and allows for better
generation of fine geometric details than a single large implicit.
However, the sparse set of point supports in prior work tends to be
arbitrary and not very interpretable. Follow-up work based on 3D
neural fields and cross-attention [Zhang et al. 2023] drops explicit
spatial grounding on the latent grids altogether. In contrast, our
skeleton-based latent grids are more structure-aware, providing
interpretable supports for latent codes in 3D space, while remaining
capable of representing complex, fine-grained topological structure.

We summarize our contributions as follows:

• We propose a generative model based on diffusion to auto-
matically synthesize skeleton-based shape representations
along with their supporting latents encoding shape informa-
tion. The model’s training procedure is performed without
any form of user input or manual tuning.
• We also devise a neural implicit representation that can be
used to accurately regress the shape surface from a skeletal
representation and associated latent field.
• According to our experiments, our method produces sig-
nificantly more faithful surface reconstruction and diverse
shape generation results compared to the state-of-the-art.
Our method handles challenging scenarios of reconstructing
and synthesizing structurally complex, high-genus shape
surfaces from Thingi10K and ShapeNet (Figure 1), including
synthesizing surfaces from user-specified skeletons largely
different from ones observed during training.

2 RELATEDWORK

3D Skeletonization. The computation of medial skeletons from
a surface representation, is a well-studied problem in geometry
processing. 1D curves or 2D sheets or a combination of them have
been traditionally used as skeletal representations of 3D shapes.
Most skeletonization methods rely on analytic approximations to
skeletons, such as Voronoi diagrams [Amenta and Bern 1998; Yan
et al. 2018] and Power diagrams [Wang et al. 2022], morphological
operations, such as surface contraction [Tagliasacchi et al. 2012],
topological graphs, such as Reeb graphs [Hilaga et al. 2001], or
optimization based on various geometric criteria (e.g., symmetry
preservation [Tagliasacchi et al. 2009], normal preservation [Wu
et al. 2015], set coverage [Dou et al. 2022]). For a full discussion
of geometric methods for skeletonization, we refer readers to the
survey by Tagliasacchi et al. [2016]. More recently, neural network
approaches have been proposed for extracting skeleton-based rep-
resentations from point clouds [Ge et al. 2023; Yin et al. 2018],
implicit shape representations [Clémot and Digne 2023; Rebain
et al. 2021], volumetric representations [Xu et al. 2019], meshes
[Xu et al. 2020], point cloud sequences [Xu et al. 2022a], or images
[Hu et al. 2022, 2023; Xu et al. 2022b]. Our work is focused not on
computing those representations, but on creating efficient shape
generation models grounded on medial abstractions. While we also
explore how to estimate such abstractions from point clouds, we pri-
marily demonstrate how these intermediate representations can be
used to guide the generation process, leading to more interpretable
and topologically faithful shapes.

Skeleton-Guided Surface Representation. 3D shapes can be
approximated as unions of spheres. For instance, a surface can be
reconstructed by piecewise linear interpolation of medial spheres
centered on skeleton points [Li et al. 2016]. Shape modeling tools
like ZBrush [Pixologic 2022] allow artists to manually create such
a skeleton of spheres via a feature called ZSpheres. Sphere Meshes
[Thiery et al. 2013] used this representation for automatic shape
approximation and extended it to non-tubular geometry. Convolu-
tion Surfaces [Bloomenthal and Shoemake 1991] are another class
of skeleton-based implicit surfaces where the surface is defined as
the level set of a function obtained by integrating a kernel function
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along the skeleton. To avoid blending artifacts, Zanni et al. [2013]
proposed scale-invariant blending. Our work investigates using
such abstractions to guide the generative process for the best of
two worlds – efficient topological representation and interpretabil-
ity from medial abstractions, and detailed surface generation from
data-driven neural fields. More recently, neural networks have been
developed to translate complete or partial surface point clouds [Nie
et al. 2020; Yang et al. 2020; Yin et al. 2018] or RGB images [Hu et al.
2022; Tang et al. 2019, 2021] to skeletal representations, and back
to either surface points or 3D meshes. None of these approaches
are generative i.e., are capable of generating multiple valid skeletal
representations given their inputs. We also develop a novel neural
surface representation based on skeleton-supported local implic-
its that directly yields a continuous surface, and is designed to be
efficient, detailed, and artifact-free.

Neural Fields. Scalar fields parameterized by neural networks have
been frequently used as a shape representation in many deep gen-
erative models [Chen and Zhang 2019; Mescheder et al. 2019; Park
et al. 2019]. When compared to other representations like voxels or
meshes, those neural fields are capable of representing shapes with
varying topology with reasonable amount of detail without requir-
ing prohibitive memory footprint. More recent approaches encode
spatially-varying features that locally modulate the neural fields to
improve the accuracy of the generated shapes [Cheng et al. 2023;
Hui et al. 2022; Peng et al. 2020; Shue et al. 2023; Zhang et al. 2022,
2023; Zheng et al. 2023; Zhou et al. 2023]. These approaches can gen-
erate topologically incorrect shapes. Our approach addresses these
issues by representing shapes as neural fields that encode a “thick-
ening” operation on a medial skeletal representation, that naturally
leads to more interpretable and topologically-faithful shapes.

Structure-Aware 3D Generation. A full review of 3D genera-
tive models is beyond our scope: we refer the reader to excellent
surveys [Shi et al. 2023; Xu et al. 2023]. Methods that directly gen-
erate “raw” representations such as voxels, meshes, or point clouds
frequently yield topological artifacts, omissions, and other inac-
curacies in regions with thin/fine details. Further, they lack inter-
pretable intermediates to help users control the generative process.
Structure-aware representations [Chaudhuri et al. 2020], such as
part-based models (e.g., [Dubrovina et al. 2019; Huang et al. 2015;
Li et al. 2017; Petrov et al. 2023; Wu et al. 2020]) potentially have
better topological fidelity and interpretability. However, they are
suitable for shapes with small numbers of parts and not for more
topologically complex structures with ambiguous part decomposi-
tions. We use medial abstractions as structure-aware intermediate
representation to avoid these limitations.

3 METHOD
At the heart of our method lies a neural generative model (Figure 2)
that first generates a skeletal representation of a shape dedicated to
compactly capturing its topology. Then, conditioned on this skeletal
representation, our generative model synthesizes the surface in the
form of an implicit function locally modulated by the skeletal data.
The skeletal representation approximates the medial axis of a 3D
shape, which has widely been used to capture shape topology. In

the following section, we briefly overview preliminaries, then we
discuss our neural implicit function and generative approach.

3.1 Preliminaries

Medial Axis Transformation.
Consider a closed, oriented, and bounded shape 𝑆 in R3, the

medial axis is represented as a set of centers of maximal spheres
inscribed within the shape (Figure 3, left).

(a) medial spheres (b) enveloping primitives

Figure 3: A shape and its me-
dial axis (purple) (a) medial
balls (yellow) vs (b) enveloping
primitives.

Each of thesemedial spheres
is tangent to at least two points
on the boundary 𝜕𝑆 of S and
does not contain any other
boundary points in its interior.
The medial axis transforma-
tion (MAT) comprises both the
medial axis and the radius as-
sociated with each sphere cen-
ter [2016]. The MAT can be
used to compactly capture both
topological shape information
and its geometry [Li et al. 2016], yet as recently noted in [Guo et al.
2023], its ability to capture local surface details, such as shape pro-
trusions and high curvature regions, is limited, since a substantial
number of medial spheres are often needed (Figure 3, left).

Enveloping Primitives. To circumvent the above limitation, Guo
et al. [2023] introduced an implicit function, called “generalized
enveloping primitive”, which represents the shape’s surface as a
directional distance field around the medial axis. Specifically, given
a query point x in R3 and a medial mesh 𝑆 discretizing the medial
axis of a given shape, their enveloping function outputs a signed
distance value for query points depending on their closest medial
elements (medial mesh vertex, edge, or face in their case):

𝐸𝑆 (x) = | |x − sx | | − 𝑟 (ds,x) (1)

where s𝑥 is the closest medial mesh element to the query point x in
Euclidean sense, ds,x = (x− sx)/∥x− sx∥ represents a unit direction
vector from the closest medial mesh element towards the query
point, and 𝑟 (·) is a radius function. The radius function essentially
defines an envelope, or displacement, around the medial axis, which
is modulated differently depending on different directions around
it (Figure 3, right), providing much better surface approximation
compared to using medial spheres. Guo et al. [2023] estimates the
above enveloping function for a given input 3D shape through a
global optimization and iterative refinement procedure.

3.2 Surface generation

Neural enveloping. We
extend the above primitives to “neural envelopes”, such that

can be used in our neural generative model. We employ a neural
network, parameterized by learnable parameters 𝜽 , to approximate
the radius function. In our case, the radius function depends not
only on the direction from a medial element to the query point but
also a medial latent code, which is specific to the medial element
and aims to encode surface information around the medial axis.
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Figure 2: GEM3D generative architecture: starting with Gaussian noise in R3, our first diffusion stage generates a point-based
medial (skeletal) shape representation conditioned on a shape category embedding. Conditioned on this representation, our
second diffusion stage generates latent codes capturing shape information around the medial points. In the last stage, our
surface decoder decodes the medial latent codes and points to local neural implicit surface representations, which are then
aggregated to create an output 3D shape.

The latent code helps decoding towards a more accurate surface,
since it is trained to encode shape information. In addition, instead
of finding the medial element closest to the query point, as done
in [Guo et al. 2023], we found that a significantly better surface
approximation can be achieved by finding themedial elementwhose
surface envelope is closest to the query point (Figure 4, see also our
ablation). Specifically, our neural enveloping function defines the
following implicit:

𝐹 (x;𝜽 ) = min
𝑖

(
| |x − s𝑖 | | − 𝑟 (d𝑖,x, z𝑖 ;𝜽 )

)
(2)

where s = {s𝑖 }𝑁𝑖=1 is a set of 𝑁 medial element positions in R3

produced by our generative model, z = {z𝑖 }𝑁𝑖=1 are corresponding
latent codes (256-dimensional in our implementation) also produced
by our generative model, and d𝑖,x = (x−s𝑖 )/∥x−s𝑖 ∥ are unit vectors
from each medial element towards the query point.

s1 s2
x

s1 s2
x

Figure 4: (Top) Using the closest
medial point for queries yields
wrong ball reconstructions. (Bot-
tom) Using the closest envelope
yields the right result. Surface re-
construction is shown in green for
both cases.

The neural network
function 𝑟 has the form of
a multi-layer MLP. Given
the values of the implicit
function extracted at a
dense grid of query points
(2563 in our implementa-
tion), the zero-level iso-
surface can be extracted
using the marching cubes
algorithm [Lorensen and
Cline 1987]. Note that
evaluating the Eq. 2 is
computationally expensive
given that it requires eval-
uating the min over the
envelopes of all queries
and medial elements. In
practice, to accelerate com-
putation, we sample a dense number of unit directions (1000 in our
implementation) around each medial element, estimate the largest
value for the radius across all directions for each medial element
i.e., form a sphere bounding the envelope of each medial element,

then compute themin over only the medial elements whose bound-
ing spheres include the query point. In this manner, we find for
each query point, the medial elements that approximately lie in the
vicinity of the query point.

Training. Given the surfaces of training shapes with their medial
elements, the parameters of the MLP can be trained to minimize
the 𝐿1 loss measuring error between predicted locations of sample
points and the location of training surface sample points sampled
at different directions around each medial element:

𝐿𝑠𝑢𝑟 𝑓 (𝜽 ) =
1
𝑁

𝑁∑︁
𝑖=1

1
|D(𝑖) |

∑︁
𝑑∈D(𝑖 )

∥x̂𝑖,𝑑 − x𝑖,𝑑 ∥1,𝑤ℎ𝑒𝑟𝑒 (3)

x𝑖,𝑑 = s𝑖 + d𝑖 · 𝑟 (d𝑖 , z𝑖 ;𝜽 ) (4)

where D(𝑖) represents a set of training surface points found by
casting rays from each medial element 𝑖 along several sample direc-
tions (1000 in our implementation), x̂𝑖,𝑑 is the 3D location of each
training surface point, and d𝑖 is a sample unit direction vector. The
loss is averaged over all shapes of the training datasets. Note that
in contrast to other neural implicit surface formulations that often
use point samples all over in R3 to avoid trivial solutions (i.e., zero
implicit values everywhere), our MLP only needs surface sample
points to be trained on.

3.3 Generative model
Central to our approach is the generation of medial elements along
with their latent codes. Our generative model proceeds in two
stages: first, we generate the positions of medial elements through
a denoising diffusion process [Ho et al. 2020; Karras et al. 2022], then
we generate their latent codes conditioned on their position through
another subsequent diffusion process. Our two-stage process allows
the generation of a multitude of different shapes conforming to
the same skeleton structure, including user-specified skeletons, as
discussed in our results and applications.

Generation of medial elements. Our first stage synthesizes a
point-based representation of the medial axis i.e., a simplified skele-
ton form including only points as medial elements (as opposed
to a mesh). The diffusion process starts by sampling 𝑁 3D point
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positions from Gaussian noise s ∼ N(0, 𝜎2maxI), where 𝜎max is
an initially prescribed standard deviation. Then an iterative de-
noising procedure is initiated to synthesize a point-based skele-
ton. The point denoising is executed by iteratively solving a prob-
ability flow ODE [Karras et al. 2022] in a series of time steps:
𝑑s = −¤𝜎 (𝑡)𝜎 (𝑡)∇s log 𝑝

(
s;𝜎 (𝑡)

)
𝑑𝑡 where 𝜎 (𝑡) is a schedule defin-

ing the desired noise level at time 𝑡 , ¤𝜎 (𝑡) is its derivative, and
∇s log 𝑝

(
s;𝜎 (𝑡)

)
𝑑𝑡 is the score function for diffusion models [Song

et al. 2021]. Following this vector field nudges the sample towards
areas of higher density of the data distribution i.e., the distribution
over plausible point-based skeletons in our case. The vector field is
approximated with the help of a denoiser neural network. The net-
work takes as input: (i) a noisy skeleton sample s consisting of 2048
noisy points in R3 in our implementation, (ii) the noise level 𝜎𝑡 at a
time step 𝑡 , (iii) and a learnable embedding vector c representing a
desired category of shapes (e.g., 55 different embedding vectors for
55 categories in ShapeNet). The embedding is used for category-
conditioned generation i.e., generate skeletons conditioned on a
desired category, such as “airplanes”. With the help of the denoiser
network, the diffusion process outputs a skeletal approximation
consisting of 2048 sample points. The denoiser network consists
of a set of blocks each producing a feature representation for each
medial point based on self-attention and cross-attention operations
[Vaswani et al. 2017; Zhang et al. 2023]. Specifically, each block
performs the following operations:

{f (𝑙 )
𝑖
}𝑁𝑖=1 = SelfAttn

(
{f (𝑙−1)
𝑖

}𝑁𝑖=1
)

(5)

{f ′(𝑙 )
𝑖
}𝑁𝑖=1 = CrossAttn

(
{f (𝑙 )
𝑖
}𝑁𝑖=1, c

)
(6)

where f (𝑙 )
𝑖

, f ′(𝑙 )
𝑖

are feature vectors (256-dimensional in our imple-
mentation) for each medial point computed after self attention and
cross attention respectively from the block 𝑙 . The first block uses as
features the current sample positions per medial point. The noise
level is taken into account the network through 𝜎-dependent skip
connections [Karras et al. 2022]. We refer to the same paper for
more details on noise variance scheduling and hyperparameters.

Training of themedial point denoiser network. The parameters
𝝓1 of denoising network 𝐷1 (s, 𝜎𝑡 , c; 𝝓1) are trained by minimizing
the 𝐿2 denoising loss for samples drawn from training skeletons:

𝐿diff,1 (𝝓1) = Eŝ∼𝑝dataEn∼N(0,𝜎2
𝑡 I) ∥𝐷1 (ŝ + n, 𝜎𝑡 , c; 𝝓1) − s∥22 (7)

where ŝ are training point-based skeletons and n is sampled Gauss-
ian noise. The training requires obtaining reference point-based
skeletons for shapes.

We developed a fast, distance field-based skeletonization algo-
rithmwhose basic idea is to move surface sample points set towards
the negative gradient of the signed distance function through an
iterative gradient descent procedure such that surface shrinks and
moves towards the medial axis. We provide more details about our
skeletonization in the supplementary material. The skeletoniza-
tion was performed automatically without any manual parameter
tuning per shape category or testing scenario.

Generation of medial latents. Given a generated point-based
skeleton s = {s𝑖 }𝑁𝑖=1 from the first diffusion model, or a point-
sampled skeleton provided as input for skeleton-based shape syn-
thesis, our second diffusion stage aims at generating a set of latent
vectors z = {z𝑖 }𝑁𝑖=1. Each latent vector z𝑖 is generated such that it
corresponds to the medial point s𝑖 . This diffusion stage proceeds in
a similar manner to the first one. We start by sampling 𝑁 3D latent
vectors from Gaussian noise, then these are iteratively denoised
by iteratively solving the same probability flow ODE [Karras et al.
2022] as in our first stage (i.e., substituting medial points with me-
dial latents). An important difference is that the denoiser network
used to compute the score function is additionally conditioned
on the medial point positions so that the network outputs latents
tailored to each medial point. Specifically, the denoiser network
𝐷2 (z, s, 𝜎𝑡 , c; 𝝓2) consists of a set of blocks implementing the self-
attention and cross-attention operations with the input category
embedding, similarly to Eq. 5 and 6 respectively.

As an additional operation, each block adds a positional embed-
ding to the input feature vector h𝑖 of each medial point based on its
position: h′(𝑙 )

𝑖
= h𝑙

𝑖
+ 𝑔(s𝑖 ), where 𝑔 represents a frequency-based

positional embedding of the medial point positions [Sitzmann et al.
2020], followed by a fully connected layer. We observed that adding
this positional embedding offered significantly better reconstruc-
tion results, since it made each latent aware of its corresponding
medial position. The feature representations of the last block is
processed through a block of self-attention layers to exchange the
information within the latent set – it produces the final latents used
in our surface decoder (Eq. 2).

Training of the medial latent denoiser network. The parame-
ters 𝝓2 of denoising network 𝐷2 (z, s, 𝜎𝑡 , c; 𝝓2) are trained by mini-
mizing the expected 𝐿2 denoising error loss for training latents:

𝐿diff,2 (𝝓2) = E𝑧∼𝑝dataEn∼N(0,𝜎2
𝑡 I) ∥𝐷2 (ẑ + n, 𝜎𝑡 , c; 𝝓2) − z∥22 (8)

where ẑ are training skeletal latent codes. To provide these latent
codes, we devised an autoencoder-based, unsupervised learning
strategy where the training latents are estimated such that they
yield an optimal surface reconstruction error for the training shapes.
More specifically, in a pre-training step that aims to estimate latents
for training shapes, we train an encoder with learnable parameters
𝝎 that takes as input a set of dense surface sample points {x̂𝑘 }𝐾𝑘=1
(200𝐾 in our implementation) along with the training medial points
{ŝ𝑖 }𝑁𝑖=1, encodes them into latent codes, then decodes them back to
predict surface points:

{ẑ𝑖 }𝑁𝑖=1 = Encoder({x̂𝑘 }𝐾𝑘=1, {ŝ𝑖 }
𝑁
𝑖=1;𝝎) (9)

{x𝑘 }𝐾𝑘=1 = Decoder({ŝ𝑖 }𝑁𝑖=1, {ẑ𝑖 }
𝑁
𝑖=1;𝜽 ) (10)

The encoder consists of cross-attention blocks that estimate features
by taking into account both the surface samples and medial points
so that the medial latents encode surface information. The decoder
implements Eq. 2, i.e., it computes surface points based on the radius
function, given medial points and latents. The encoder and decoder
parameters are trained to minimize the surface loss of Eq. 3 along
with a KL regularization loss, as commonly used in variational
autoencoders [Kingma and Welling 2014].
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4 RESULTS & APPLICATIONS
We discuss the experiments and validation of our method for three
applications: category-conditioned shape generation, surface recon-
struction from point clouds, and skeleton-driven shape generation.

4.1 Category-driven shape generation
In this application, the input is a given category (e.g., “lamp”, “chair”,
and so on) and the output is a sample set of 3D generated shapes
from this category. Our method here makes use of the diffusion
stages discussed in Section 3.3: the first stage generates a point-
based MAT given the input category and the second stage generates
the medial latents given the input category. Then our surface de-
coder generates the surface under the guidance of the medial points
and latents (Section 3.2).

Baselines and metrics. We compare our method with the fol-
lowing recent neural 3D generative methods: the autoregressive
transformer-based 3DILG model [Zhang et al. 2022] and latent
diffusion-based 3DS2VS [Zhang et al. 2023]. For both competing
methods, we use the source code provided by the authors.

As generative evaluation metrics, we employ the metrics also
used in 3DS2VS. First, we report the Maximum Mean Discrep-
ancy based on Chamfer Distance (MMD-CD) and Earth Mover’s
Distance (MMD-EMD) – the MMD metrics quantify the fidelity
of generated examples i.e., how well the generated shapes match
the reference ShapeNet test splits. In addition, we report coverage
measured as the fraction of the generated shapes matching the
reference test splits in terms of Chamfer distance (COV-CD) and
Earth Mover’s Distance (COV-EMD). For implementation details
of these metrics, we refer readers to [Achlioptas et al. 2018b] who
introduced them in the context of 3D generation.

In addition, as proposed in the literature of image generative
models, we use the Fréchet Inception Distance and Kernel Inception
Distance. While prior work [Zhang et al. 2022, 2023] relies on
PointNet++ embeddings to evaluate these metrics, we use the 768-
D embeddings taken by the more recent and more discriminative
model of PointBert [Yu et al. 2022]. We refer to these two metrics as
PointBert-FID and PointBert-KID. Finally, we report generative
precision and recall [Sajjadi et al. 2018] as alternative measures to
assess how well generated data covers the reference test splits and
vice versa. For precision and recall, the similarities are assessed via
PointBert embeddings.

Experimental setup. We follow the experimental setup of 3DS2VS
[Zhang et al. 2023], which was also demonstrated in the same ap-
plication. We use the same dataset of ShapeNet-v2 [Chang et al.
2015] with the same splits. We use the same watertight ShapeNet
meshes provided by [Zhang et al. 2022]. In constrast to 3DS2VS
that evaluated category-conditioned generation in 2 categories, in
our case we evaluate on the largest 10 categories from ShapeNet,
namely: tables, cars, chairs, airplanes, sofas, rifles, lamps, water-
crafts, benches, and speakers. To further improve our evaluation,
for each method and category we generate a number of samples
equal to 3x the size of the ground truth test split per category, which
is also consistent with Achlioptas et al. [2018b] originally proposed.

Metric 3DILG 3DS2VS Ours

MMD-CD (×102) (↓) 9.64 9.34 8.64
MMD-EMD (×102) (↓) 11.0 10.9 10.1

COV-CD (×102) (↑) 54.8 50.6 58.5
COV-EMD (×102) (↑) 53.1 49.9 57.2

precision (%) (↑) 73.1 72.4 80.6
recall (%) (↑) 79.4 80.3 89.2

PointBert-FID (×10−2) (↓) 1.46 1.62 1.25
PointBert-KID (×1) (↓) 4.06 4.77 2.54

Table 1: Evaluation measures on category-conditioned shape
generation. The measures are averaged over the 10 largest
categories of ShapeNet. For evaluation per-category, please
see the supplement.

Quantitative results. Table 1 shows quantitative evaluation of
all competing methods for all above measures. The measures are
averaged over the 10 largest categories of ShapeNet. For all met-
rics, our method outperforms the competing work demonstrating
results of better fidelity, coverage, precision and recall. In addition,
we observe that according to FID/KID, our method outputs samples
whose feature distributions match better the reference splits. Our
supplement includes per-category evaluation for all measures –
again, for the majority of categories, GEM3D outperforms the com-
peting methods for all metrics. In particular, we observe that the gap
widens for categories containing shapes with thin or tubular-like
parts, such as benches, rifles, airplanes, chairs, and tables.

Qualitative results. Figure 5 demonstrates generated samples from
our method for various categories from ShapeNet. We observe that
our method is able to generate structurally challenging patterns
(e.g., grid-like patterns for chair backs), thin parts (e.g, wings for
airplanes), tubular or generalized cylinder-like parts (e.g., lamp
wires or other connecting pieces).

Timings. It takes around 40 seconds for GEM3D to generate the
skeleton and surface, while 3DS2VS takes about 20 seconds. Re-
construction takes 6s for GEM3D vs 12s for 3DS2VS (1283 grid; all
measured on a NVidia RTX 2080Ti).

4.2 Surface reconstruction from point clouds
In this application, the input to our method is a sparse point cloud
of a shape and the output is a reconstructed surface. Here, we also
follow the “auto-encoding” setting also used in 3DILG [Zhang et al.
2022] and 3DS2VS [Zhang et al. 2023], where the point cloud is
obtained after sampling the original input surface. In this autoen-
coding setting, we only use the second diffusion stage of our method
i.e., given a point-based skeleton, the second stage generates the
medial latents, then our surface decoder uses them to reconstruct
the surface. To apply our method on this task, we need as input a
point-sampled skeleton. To obtain such a skeleton, we use a variant
of P2PNet [Yin et al. 2018], an encoder-decoder network that takes
as input a point cloud of a shape’s surface and converts it to a point-
based skeleton representation. Compared to the original P2PNet,
we replaced the original PointNet++ encoder [Qi et al. 2017] with
the cross-attention-based shape encoder from 3DS2VS [Zhang et al.
2023], including its positional-based embedding functions. We train
this P2PNet variant in the training split of ShapeNet. Then at test
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Figure 5: Category-conditioned shape generation on ShapeNet. We show generated shapes from GEM3D for five categories:
chair, lamp, airplane, table, bench and watercraft (from top to bottom). Odd rows are skeletons generated by our model; even
rows are surfaces sampled from them.
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time, we use its output skeletons as input to our model decoder.
We emphasize that no manual input or supervision were needed to
obtain the skeletons – P2PNet is trained in a unsupervised manner.

Baselines andmetrics. We again compare our method with 3DILG
[Zhang et al. 2022] and 3DS2VS [Zhang et al. 2023], which were
also applied in the same auto-encoding setting. All methods use
the same number of latent codes (2048).

For evaluation purposes, we compare reconstructed shapes to
their corresponding reference (“ground-truth”) shapes, which the
input point clouds were sampled from. Following 3DS2VS [Zhang
et al. 2023], we use the Chamfer Distance (CD), Intersection Over
Union (IoU) and F-Score (F1). Compared to 3DS2VS’ protocol, we
made the following changes: (i) for computing IoU, we use a higher-
resolution grid of 2563 instead of 1283 to better characterize recon-
struction of small-scale surface details, thin parts, and holes, (ii)
input point clouds are sampled with farthest point sampling instead
to better cover small and thin parts. In the supplement, we provide
comparisons using the original 3DS2VS’ protocol.

Experimental setup. Following [Zhang et al. 2022] and [Zhang
et al. 2023], we use the same training and test split from ShapeNet-v2
to train and test our method respectively. We also test all compet-
ing methods in a more challenging out-of-distribution testing sce-
nario: after training on ShapeNet, we test all methods on Thingi10K
[Zhou and Jacobson 2016]. We note that the whole dataset is 10𝐾
test shapes, 4 times larger than the ShapeNet’s test split. The
Thingi10K contains man-made objects that often possess highly

Input 3DILG 3D2VS Ours(S) Ours(M) GT

Figure 6: Point cloud reconstruction on
ShapeNet. GEM3D yields better reconstruction esp for
thin and tubular parts, and with better connectivity.

Input 3DILG 3D2VS Ours(S) Ours(M) GT

Figure 7: Point cloud reconstruction on Thingi10K. In this
out-of-distribution test setting our model is able to recon-
struct topology (e.g., holes, connectivity) and surface details
with less artifacts than prior work.

Metric Test dataset 3DILG 3DS2VS Ours

CD (↓) Shapenet (10 cat.) 1.69 1.32 1.17
CD (↓) Shapenet (all cat.) 2.05 1.70 1.38
IOU (↑) Shapenet (10 cat.) 90.1 96.2 95.9
IOU (↑) Shapenet (all cat.) 90.5 95.4 95.5
F1 (↑) Shapenet (10 cat.) 97.7 98.5 99.3
F1 (↑) Shapenet (all cat.) 96.3 97.4 98.7

Table 2: Point cloud surface reconstruction (“auto-encoding”)
evaluation on ShapeNet. The rows “ShapeNet (10 cat.)” re-
port the measures averaged over the 10 largest categories of
ShapeNet, while the rows “ShapeNet (all)” report the mea-
sures averaged over all 55 ShapeNet categories. For evaluation
per-category, please see the supplement.

Thingi10K #𝑠ℎ𝑎𝑝𝑒𝑠 3DILG 3DS2VS Ours
all 9997 2.12 1.74 1.68

𝑔𝑒𝑛𝑢𝑠 ≥ 0 5608 1.93 1.62 1.61
𝑔𝑒𝑛𝑢𝑠 ≥ 5 1037 2.41 1.96 1.78
𝑔𝑒𝑛𝑢𝑠 ≥ 10 489 2.88 2.30 1.98CD ↓

𝑔𝑒𝑛𝑢𝑠 ≥ 20 229 3.67 2.91 2.32
all 9997 93.6 96.4 96.7

𝑔𝑒𝑛𝑢𝑠 ≥ 0 5608 95.3 97.4 97.4
𝑔𝑒𝑛𝑢𝑠 ≥ 5 1037 91.1 94.8 95.9
𝑔𝑒𝑛𝑢𝑠 ≥ 10 489 87.5 92.3 93.7F1 ↑

𝑔𝑒𝑛𝑢𝑠 ≥ 20 229 82.6 88.0 90.4

Table 3: Evaluation measures on point cloud surface recon-
struction in the Thingi10K dataset. We note that none of the
methods are trained on Thingi10K. We report performance
in terms of CD and F1 scores for shapes of increasing genus.
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complex topology. Vast majority of the Thingi10K shapes do not
exists in ShapeNet and do not even relate to any of its categories.
Thingi10K also provides topological complexity information (genus)
for a large subset of the dataset. We use it as a proxy of topological
complexity for additional evaluation.

Quantitative results. Table 2 shows quantitative evaluation on
ShapeNet-v2. The odd rows report the measures averaged over the
10 largest categories of ShapeNet, and the even rows report the mea-
sures averaged over all 55 categories. In terms of the surface-based
metrics of CD and F1 scores, our model is consistently better than
the baselines. In terms of IoU, our model has comparable perfor-
mance. The results reflect a more accurate surface reconstruction,
without compromising volumetric (IoU) accuracy. The supplement
reports the performance for each of the largest 10 categories –
again, we outperform prior methods, especially for topologically
challenging categories, such as lamps and watercrafts. The out-
of-distribution evaluation on Thingi10K is shown in Table 3. Our
model clearly outperforms the baselines – the performance gap in-
creases for topologically challenging shapes with higher genus. We
note that this evaluation does not include IoU since some Thingi10K
ground-truth shapes are not watertight, thus, volume-based metrics
cannot be accurately assessed.

Qualitative results. Figures 6 and 7 shows qualitative evalua-
tion on ShapeNet-v2 and Thingi10K respectively. In particular, the
Thingi10K results show that our method can better reconstruct

Skeleton Sample 1 Sample 2 Sample 3 Sample 4

Figure 8: Surface sampling conditioned on skeleton. Our
model can sample diverse and structurally consistent sur-
faces from generated skeletons. Surfaces were sampled using
following category tokens (from top to bottom): chair, chair,
lamp, lamp, airplane.

surface topology e.g., the connectivity of different shape parts and
their surface holes. We suspect that this is due to the ability of our
method to capture structure and topology information through the
neural medial representation, which in turn guides the reconstruc-
tion. In contrast, 3DILG and 3D2VS tend to oversmooth surface
details, miss connections, and close holes in the shapes.

Ablation studies. In our supplementary material, we also show
the impact of various choices in our method, including testing with
different number of medial points and using closest medial points
versus closest envelopes for reconstruction.

4.3 Skeleton-driven shape synthesis
An alternative application of our method is to generate surfaces
driven by an input skeleton in the form of a point-based MAT. From
a practical point of view, one possibility for users of our method is
to execute our first diffusion stage, obtain various shape structures
represented in their MATs, then select the one matching their target
structure or topology goals more. Then the user can execute the
second stage to obtain various shape alternatives conforming to the
given structure. Figure 8 highlights several examples of this appli-
cation scenario. We show a generated MAT, then diverse surfaces
conforming to it. For example, our method can generate diverse
lamp stands from a table lamp structure or chairs of diverse part
thicknesses conforming to a particular chair structure.

Moreover, instead of obtaining a MAT from our method, an
alternative scenario is that the user provides such as input. We
asked an artist to draw the skeletons of completely fictional objects
using 3D B-spline curves and patches. Our method was still able to

Skeleton Sample 1 Sample 2 Sample 3

Figure 9: Surface generation based on user-modeled skele-
tons. Our model is able to generalize to unseen structures
encoded in user-provided skeletons, and produces plausible
surface samples from them. Surfaces were sampled using
following category tokens (from top to bottom): lamp, lamp,
airplane, chair.
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generate diverse surfaces conforming to these out-of-distribution
skeletons, as shown in Figure 9.

5 DISCUSSION
We presented a skeleton-centered generative model of 3D shapes.
Our method first captures structure and topology in the form of
a generated skeleton, then synthesizes the surface guided from it.
Users can also provide their own modeled skeletons in the process
to control shape synthesis.

Figure 10: Failure cases.
(Left) Generated MAT is
unrealistic for lamp cat-
egory. (Right) Generated
surface is non-smooth.

Limitations. Failure cases of our
method include unrealistic generated
skeletons and noisy generated sur-
faces due to noise in MATs (Figure 10).
We hypothesize this is due to either
noisy training MATs or the training
data being too limited for the model
to learn comprehensive structural pri-
ors for challenging categories. Our
method also has a number of other
limitations. First, it relies on a simplified form of point-based skele-
tons. Second, the diversity of surfaces sampled from skeletons is
sometimes limited. Investigation of less expressive skeletal repre-
sentations or additional types of conditioning (e.g. images or text)
can improve this aspect of our model. Other future directions would
be to enable interactive skeleton editing, shape synthesis from edits,
combinations of our model with sketch-based editing models [Luo
et al. 2023] and physics-based shape deformations [Lan et al. 2020].
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SUPPLEMENTARY MATERIAL
A PER-CATEGORY EVALUATION
In this appendix, we discuss more detailed evaluation, including
per-category evaluation for generation and reconstruction.

Shape generation. In terms of generative measures, we report
precision and recall per category in Table 4, and PointBert-FID
and PointBert-KID per category in Table 5. We also report the per-
category MMD-CD, MMD-COV, COV-CD, COV-MD in Table 6.
Overall, we observe that for the majority of categories, GEM3D
outperforms the competing methods in terms of all metrics, espe-
cially in terms of generative recall. We hypothesize that is due to
fact that our two step generative procedure allows model to learn
better structural priors leading to generation of more structurally
diverse shapes.

Surface reconstruction from point clouds. For reconstruction,
we report CD, IoU and F1 scores for each of the largest 10 cate-
gories of ShapeNet in Table 7. We also report performance using
512 latent codes vs 2048 latent codes for all methods. For most
categories, GEM3D outperforms the competing methods especially
in terms of the surface-based metrics (CD and F1 scores), while
it offers comparable performance in terms of IoU. As expected,
the performance is improved with more latent codes for all meth-
ods. As explained in our main text, this evaluation is done on a

Precision (↑) Recall (↑)
3DILG 3DS2VS Ours Ours-UPD Ours-UPD2 3DILG 3DS2VS Ours Ours-UPD Ourse-UPD2

table 76.0 74.0 91.3 90.6 84.9 74.0 77.4 95.6 94.7 92.5
car 48.5 74.8 73.5 75.3 75.9 61.6 73.5 89.2 88.0 89.2
chair 91.7 82.4 88.9 89.2 84.0 90.9 84.7 93.2 93.6 91.4
plane 82.2 74.4 88.8 87.4 87.7 78.8 86.4 95.3 94.3 95.4
sofa 64.8 79.4 78.6 78.9 79.0 82.5 88.9 93.9 93.7 93.4
rifle 69.3 69.6 75.2 67.6 71.9 71.0 74.9 85.8 77.9 83.1
lamp 82.8 50.7 69.1 66.3 67.8 86.1 72.2 74.4 68.5 80.0
w-craft 72.3 77.6 84.4 82.6 83.1 86.1 83.8 87.1 86.9 87.5
bench 71.6 70.4 81.3 78.1 70.3 84.5 79.2 88.4 87.9 83.4
speaker 71.7 71.0 74.4 75.6 78.9 74.4 81.5 89.5 83.5 75.2

mean 73.1 72.4 80.6 79.2 78.35 79.4 80.3 89.2 86.9 87.1

Table 4: Per-category evaluation of generated samples based
on precision and recall using PointBert as a backbone to
assess shape similarity. We note that for each method we
generate a number of samples equal to 3x the size of the
ground truth test split per category.

PointBert-FID (×10−2) (↓) PointBert-KID (↓)
3DILG 3DS2VS Ours Ours-UPD Ours-UPD2 3DILG 3DS2VS Ours Ours-UPD Our-UPD2

table 1.57 1.53 0.71 0.74 0.86 6.87 7.49 1.31 1.42 2.28
car 1.39 0.98 0.82 0.83 0.8 7.68 3.56 3.13 3.25 2.81
chair 0.84 1.24 0.79 0.79 0.87 1.76 3.74 1.20 1.24 1.68
plane 0.90 1.06 0.79 0.81 0.79 2.10 4.08 1.46 1.78 1.52
sofa 1.29 1.07 1.05 1.01 1.03 3.37 1.46 1.96 1.42 1.74
rifle 1.52 1.51 1.07 1.22 1.12 6.53 5.87 2.51 3.88 2.92
lamp 1.84 3.81 2.88 2.99 2.84 2.28 15.2 9.32 10.4 8.63
w-craft 1.70 1.49 1.34 1.39 1.33 4.18 1.70 0.86 1.16 0.82
bench 1.70 1.75 1.47 1.48 1.61 2.84 2.71 1.16 1.28 2.24
speaker 1.85 1.79 1.62 1.64 1.75 2.95 1.85 2.50 2.27 2.28

mean 1.46 1.62 1.25 1.29 1.3 4.06 4.77 2.54 2.81 2.70

Table 5: Per-category evaluation of generated samples based
on FID and KID scores using PointBert as a backbone for
feature extraction.We note that for eachmethod we generate
a number of samples equal to 3x the size of the ground truth
test split per category.

higher-resolution grid and with more uniform point-based surface
sampling (furthest point sampling). In contrast, 3DShape2VecSet
follows a different evaluation protocol based on a lower-resolution
grid and random point sampling.We report the evaluationmeasures
for reconstruction based on the original 3DShape2VecSet protocol
on the categories reported in their paper in Table 8. We observe
the same trends, yet, our gap with other methods slightly decreases
given that this evaluation protocol is less sensitive to topological
and surface details.

B ABLATION
We perform the following ablation studies:
(a) We tested using 2048 vs 512 different number of medial points
and correspondingly, different number of latent codes. Results are
evaluated in the task of surface reconstruction and are shown in Ta-
ble 7. With more latents, our performance is improved, as expected.

(b) We tested using closest medial points vs closest medial en-
volope in our implicit function. Using closest medial envelopes
yielded the best performance, as shown in Table 9.

ALGORITHM 1: Medial extraction algorithm

Input: Surface point samples 𝑃 = {p𝑖 }𝑁𝑖=1
Parameters: Learning rate 𝜆 = 0.1, local shape diameter threshold

𝜏max = 0.6, number of neighbors 𝐾 = 20 for kernel
SDF estimation, kernel bandwidth 𝜎2 = 0.002,
number of iterations𝑀 = 50

Result: Medial points 𝑆 = {s𝑖 }𝑁𝑖=1
Initialize: For each surface point p𝑖 ∈ 𝑃 estimate local shape

diameter function 𝛽𝑖 through ray casting and its normal
n𝑖 from the original mesh; initialize medial points
q𝑖 = p𝑖 − 1

2 𝛽𝑖n𝑖
for iterations < 𝑀 do

For each q𝑖 find 𝐾 nearest neighbors p𝑖 𝑗 ;
Estimate local SDF 𝑓 (𝑞𝑖 ) =

∑
𝑗 𝛼𝑖 𝑗 𝑓 (p𝑖 𝑗 )∑

𝑗 𝛼 𝑗
, where:

𝛼𝑖 𝑗 = exp − | |q𝑖−p𝑖 𝑗 | |
2

𝜎2 and
𝑓 (p𝑖 𝑗 ) is the signed distance of q𝑖 to p𝑖 𝑗 ’s tangent plane;
Compute updated skeleton points q̂𝑖 = q𝑖 − 𝜆∇q𝑖 𝑓 (q𝑖 ) ;
if | |q̂𝑖 − p𝑖 | | ≤ 𝜏max𝛽𝑖 then

s𝑖 ← q̂𝑖
end

end

C SKELETONIZATION
Skeletonization is a well-studied topic in the geometry processing
literature [Tagliasacchi et al. 2016]. All skeletonization methods rely
on different assumptions, approximation heuristics, and conver-
gence criteria that might lead to different MAT approximations. We
tried various skeletonizations methods, including mean curvature
flow skeletons [Tagliasacchi et al. 2012], medial skeletal diagrams
[Guo et al. 2023], and the “neural skeletons” by Clemot et al. [2023].
However, we found that all methods either were too slow to pro-
cess large datasets or needed manual parameter runing. For our
purposes, we needed a skeletonization method that is scalable i.e.,
is able to handle large shape collections, such as ShapeNet (in other
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MMD-CD (×102) (↓) MMD-EMD (×102) (↓) COV-CD (×102) (↑) COV-EMD (×102) (↑)
3DILG 3DS2VS Ours Ours-UPD Ours-UPD2 3DILG 3DS2VS Ours Ours-UPD Ours-UPD2 3DILG 3DS2VS Ours Ours-UPD Ours-UPD2 3DILG 3DS2VS Ours Ours-UPD Ours-UPD2

table 11.00 9.87 9.01 9.14 9.21 12.63 11.74 10.67 10.75 10.90 44.66 59.46 65.08 64.21 64.21 46.71 53.05 62.95 63.34 61.20
car 5.42 5.38 5.07 5.04 4.98 6.37 6.16 5.92 5.84 5.85 41.90 44.00 42.86 43.05 45.71 34.29 46.67 46.48 50.48 50.48
chair 11.89 12.44 10.99 10.89 10.94 12.86 13.66 12.37 12.19 12.32 61.44 51.97 61.34 62.43 61.24 61.14 48.82 56.02 57.00 55.52
airplane 5.13 5.60 4.70 4.79 4.73 6.67 7.23 6.21 6.29 6.21 56.27 46.53 64.36 65.51 64.85 61.39 47.03 63.37 64.52 64.52
sofa 12.20 9.72 9.48 9.36 9.33 12.51 10.63 9.82 9.74 9.80 43.25 54.85 53.16 55.70 55.06 40.30 54.01 53.80 57.38 54.43
rifle 5.27 5.35 5.05 5.19 5.08 6.83 6.86 6.79 7.00 6.88 59.32 40.40 55.93 52.26 53.39 60.45 44.35 53.95 49.44 49.15
lamp 15.06 15.93 15.32 15.39 14.97 19.24 20.88 19.69 20.39 19.60 64.64 41.74 51.01 49.57 50.14 61.74 43.48 49.28 46.67 47.83
watercraft 8.53 7.70 7.16 7.32 7.15 9.55 8.93 8.33 8.45 8.28 65.28 60.07 71.88 74.65 70.83 59.38 56.60 65.97 70.49 66.32
bench 9.68 9.31 9.05 9.01 9.24 10.72 10.39 10.03 10.02 10.19 54.81 51.85 54.07 52.96 54.81 53.33 52.59 55.19 53.70 54.81
loudspeaker 12.27 12.05 10.56 11.04 11.01 12.57 12.66 11.45 11.89 12.09 57.38 55.70 65.40 67.09 65.82 52.32 53.16 64.98 60.34 64.56

Mean 9.64 9.34 8.64 8.72 8.66 11.00 10.91 10.13 10.26 10.21 54.89 50.66 58.51 58.74 58.61 53.11 49.98 57.20 57.34 56.88

Table 6: Per-category evaluation of generated samples based on MMD-CD, MMD-COV, COV-CD, and COV-MD. We note that for
each method we generate a number of samples equal to 3x the size of the ground truth test split per category.

3DILG 3D2VS Ours 3DILG 3D2VS Ours
# latents 512 512 512 2048 2048 2048

CD ↓

table 1.38 1.05 1.01 1.36 1.03 0.99
car 2.29 1.86 1.24 2.27 1.76 1.18
chair 1.42 1.09 1.05 1.39 1.06 1.03

airplane 0.98 0.59 0.59 0.97 0.58 0.58
sofa 1.37 1.06 1.02 1.35 1.04 1.00
rifle 0.94 0.47 0.45 0.92 0.46 0.45
lamp 1.82 1.02 0.72 1.8 1.02 0.72
w-craft 1.25 0.84 0.71 1.23 0.79 0.69
bench 1.28 0.94 0.84 1.27 0.93 0.82
speaker 1.8 1.46 1.28 1.77 1.42 1.23

IOU ↑

table 88.9 95.9 93.5 88.9 96.2 94.3
car 92.9 95.8 94.8 93.1 96.2 95.7
chair 90.5 95.9 94.8 90.6 96.4 95.3

airplane 89.3 96.5 96.5 89.6 96.9 96.7
sofa 95.1 98.1 97.5 95.2 98.3 97.8
rifle 87.0 96.0 96.5 87.2 96.2 96.6
lamp 85.6 94.0 94.5 86.5 94.6 93.9
w-craft 90.8 96.4 96.5 91.0 96.7 96.8
bench 85.7 94.4 94.0 86.0 94.7 94.8
speaker 92.4 95.9 94.7 92.6 96.3 97.7

F1 ↑

table 99.0 99.4 99.6 99.1 99.5 99.7
car 91.6 93.2 96.5 91.9 93.9 97.4
chair 98.5 99.2 99.4 98.7 99.3 99.4

airplane 99.6 99.9 99.9 99.6 99.9 99.9
sofa 98.7 99.2 99.5 98.9 99.4 99.6
rifle 99.7 99.9 100.0 99.7 100.0 100.0
lamp 97.4 98.6 99.5 97.4 98.7 99.4
w-craft 98.1 98.6 99.7 98.2 98.9 99.8
bench 98.7 99.3 99.7 98.9 99.3 99.7
speaker 95.9 96.9 98.3 96.2 97.4 98.7

Table 7: Evaluation of reconstructed surfaces on ShapeNet
based on Chamfer Distance (CD), Intersection over Union
(IoU), and F1 scores for the auto-encoding task. All numbers
are scaled by 100.

words, it is able to extract a skeleton from a mesh efficiently e.g.,
a few seconds for the largest mesh). The algorithm should also be
robust to varying mesh tesselations, and most importantly should
not not require manual parameter adjustment for different shape
categories.

During our early experiments, we found out that none of existing
methods satisfy all the above criteria. These issues led us to develop
our own skeletonization algorithm that balances computational
efficiency with the need for accurate skeletons. A key component of
this algorithm is a gradient descent procedure on the signed distance
function (SDF) of the shape approximated through a local RBF
kernel to shrink the surface iteratively towards its interior. We note
that our skeletonization is inspired by [Clémot and Digne 2023],
yet with several important differences, including in the surface
sampling, initialization, gradient descent procedure, and stopping
criteria. The algorithm is summarized in Algorithm 1. It initiates
medial points from surface sample points from a given mesh by
shifting the surface points according to their negated surface normal
and a multiplier of the local shape diameter estimated per point
through ray casting. This initialization bootstraps the procedure,
since the subsequent iterative phase of the method is slower. In
the iterative phase, for each current position of medial point, the
algorithm computes a Signed Distance Function approximation
(SDF) by averaging its signed distances to the tangent planes of the
nearest surface points. The averaging is performed with the help of
RBF kernel. Following the gradient of the SDF gradually shrinks the
shape. The update is constrained: it is accepted if the updated point
remains within a distance less than a given threshold expressed as
a multiplier (approximately half) of the local shape diameter. This
ensures that the points will meet close to the middle of the shape
and will not drift too further away. The method continues until the
skeleton point positions converge up to a tolerance threshold. The
parameters used in our method are listed in Algorithm 1. For all our
shapes involved in our experiments, these parameters were fixed.
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OccNet ConvOccNet IF-Net 3DILG 3D2VS-LQ 3D2VS-PQ GEM3D

CD ↓

table 0.041 0.036 0.029 0.026 0.026 0.026 0.014
car 0.082 0.083 0.067 0.066 0.062 0.062 0.016
chair 0.058 0.044 0.031 0.029 0.028 0.027 0.015

airplane 0.037 0.028 0.020 0.019 0.018 0.017 0.008
sofa 0.051 0.042 0.032 0.030 0.030 0.029 0.015
rifle 0.046 0.025 0.018 0.017 0.016 0.014 0.006
lamp 0.090 0.050 0.038 0.036 0.035 0.032 0.010

IoU ↑

table 0.823 0.847 0.901 0.963 0.965 0.971 0.960
car 0.911 0.921 0.952 0.961 0.966 0.969 0.936
chair 0.803 0.856 0.927 0.950 0.957 0.964 0.958

airplane 0.835 0.881 0.937 0.952 0.962 0.969 0.961
sofa 0.894 0.930 0.960 0.975 0.975 0.982 0.974
rifle 0.755 0.871 0.914 0.938 0.947 0.960 0.956
lamp 0.735 0.859 0.914 0.926 0.931 0.956 0.934

F1 ↑

table 0.961 0.982 0.998 0.999 0.999 0.999 0.991
car 0.830 0.852 0.888 0.892 0.898 0.899 0.965
chair 0.890 0.943 0.990 0.992 0.994 0.997 0.984

airplane 0.948 0.982 0.994 0.993 0.994 0.995 0.998
sofa 0.918 0.967 0.988 0.986 0.986 0.990 0.987
rifle 0.922 0.987 0.998 0.997 0.998 0.999 0.999
lamp 0.820 0.945 0.970 0.971 0.970 0.975 0.990

Table 8: Evaluation of reconstructed surfaces on ShapeNet based on Chamfer Distance (CD), Intersection over Union (IoU), and
F1 scores for the auto-encoding task. Here we use the original 3DShape2VecSet protocol. We report the same seven categories
and numbers are not scaled as in their paper.

Choice in the decoder CD (↓) IOU (↑) F1(↑)
Closest medial point 1.41 89.9 98.6

Closest medial envelope 1.38 95.5 98.7

Table 9: Ablation study based on the ShapeNet point cloud
reconstruction task (we report averages over all 55 categories).
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